These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 36282088)

  • 21. Efficient Analytic Second Derivative of Electrostatic Embedding QM/MM Energy: Normal Mode Analysis of Plant Cryptochrome.
    Schwinn K; Ferré N; Huix-Rotllant M
    J Chem Theory Comput; 2020 Jun; 16(6):3816-3824. PubMed ID: 32320612
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Numerical Nuclear Second Derivatives on a Computing Grid: Enabling and Accelerating Frequency Calculations on Complex Molecular Systems.
    Yang T; Berry JF
    J Chem Theory Comput; 2018 Jul; 14(7):3459-3467. PubMed ID: 29787266
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reaction path potential for complex systems derived from combined ab initio quantum mechanical and molecular mechanical calculations.
    Lu Z; Yang W
    J Chem Phys; 2004 Jul; 121(1):89-100. PubMed ID: 15260525
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nonempirical anharmonic vibrational perturbation theory applied to biomolecules: free-base porphin.
    Krasnoshchekov SV; Stepanov NF
    J Phys Chem A; 2015 Mar; 119(9):1616-27. PubMed ID: 25360995
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Using molecular dynamics and quantum mechanics calculations to model fluorescence observables.
    Speelman AL; Muñoz-Losa A; Hinkle KL; VanBeek DB; Mennucci B; Krueger BP
    J Phys Chem A; 2011 Apr; 115(16):3997-4008. PubMed ID: 21417498
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of linear-scaling semiempirical methods and combined quantum mechanical/molecular mechanical methods for enzymic reactions. II. An energy decomposition analysis.
    Titmuss SJ; Cummins PL; Rendell AP; Bliznyuk AA; Gready JE
    J Comput Chem; 2002 Nov; 23(14):1314-22. PubMed ID: 12214314
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Computational vibrational spectroscopy of peptides and proteins in one and two dimensions.
    Jeon J; Yang S; Choi JH; Cho M
    Acc Chem Res; 2009 Sep; 42(9):1280-9. PubMed ID: 19456096
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Free energies of binding from large-scale first-principles quantum mechanical calculations: application to ligand hydration energies.
    Fox SJ; Pittock C; Tautermann CS; Fox T; Christ C; Malcolm NO; Essex JW; Skylaris CK
    J Phys Chem B; 2013 Aug; 117(32):9478-85. PubMed ID: 23841453
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantum mechanics/molecular mechanics minimum free-energy path for accurate reaction energetics in solution and enzymes: sequential sampling and optimization on the potential of mean force surface.
    Hu H; Lu Z; Parks JM; Burger SK; Yang W
    J Chem Phys; 2008 Jan; 128(3):034105. PubMed ID: 18205486
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biomolecular force fields: where have we been, where are we now, where do we need to go and how do we get there?
    Dauber-Osguthorpe P; Hagler AT
    J Comput Aided Mol Des; 2019 Feb; 33(2):133-203. PubMed ID: 30506158
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Look Inside the Black Box of Machine Learning Photodynamics Simulations.
    Li J; Lopez SA
    Acc Chem Res; 2022 Jul; 55(14):1972-1984. PubMed ID: 35796602
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gradient-based multiconfiguration Shepard interpolation for generating potential energy surfaces for polyatomic reactions.
    Tishchenko O; Truhlar DG
    J Chem Phys; 2010 Feb; 132(8):084109. PubMed ID: 20192292
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A matrix completion algorithm for efficient calculation of quantum and variational effects in chemical reactions.
    Bac S; Quiton SJ; Kron KJ; Chae J; Mitra U; Mallikarjun Sharada S
    J Chem Phys; 2022 May; 156(18):184119. PubMed ID: 35568565
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantum machine learning for electronic structure calculations.
    Xia R; Kais S
    Nat Commun; 2018 Oct; 9(1):4195. PubMed ID: 30305624
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rapid Convergence of Energy and Free Energy Profiles with Quantum Mechanical Size in Quantum Mechanical-Molecular Mechanical Simulations of Proton Transfer in DNA.
    Das S; Nam K; Major DT
    J Chem Theory Comput; 2018 Mar; 14(3):1695-1705. PubMed ID: 29446946
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adsorption Enthalpies for Catalysis Modeling through Machine-Learned Descriptors.
    Andersen M; Reuter K
    Acc Chem Res; 2021 Jun; 54(12):2741-2749. PubMed ID: 34080415
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The ab initio calculation of molecular electric, magnetic and geometric properties.
    Bast R; Ekström U; Gao B; Helgaker T; Ruud K; Thorvaldsen AJ
    Phys Chem Chem Phys; 2011 Feb; 13(7):2627-51. PubMed ID: 21180690
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analytic Energy, Gradient, and Hessian of Electrostatic Embedding QM/MM Based on Electrostatic Potential-Fitted Atomic Charges Scaling Linearly with the MM Subsystem Size.
    Huix-Rotllant M; Ferré N
    J Chem Theory Comput; 2021 Jan; 17(1):538-548. PubMed ID: 33284620
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficiency considerations in the construction of interpolated potential energy surfaces for the calculation of quantum observables by diffusion Monte Carlo.
    Crittenden DL; Thompson KC; Chebib M; Jordan MJ
    J Chem Phys; 2004 Nov; 121(20):9844-54. PubMed ID: 15549857
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.