BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 36282174)

  • 21. Deciphering the Prognostic Implications of the Components and Signatures in the Immune Microenvironment of Pancreatic Ductal Adenocarcinoma.
    Tang R; Liu X; Liang C; Hua J; Xu J; Wang W; Meng Q; Liu J; Zhang B; Yu X; Shi S
    Front Immunol; 2021; 12():648917. PubMed ID: 33777046
    [No Abstract]   [Full Text] [Related]  

  • 22. A machine learning framework develops a DNA replication stress model for predicting clinical outcomes and therapeutic vulnerability in primary prostate cancer.
    Huang RH; Hong YK; Du H; Ke WQ; Lin BB; Li YL
    J Transl Med; 2023 Jan; 21(1):20. PubMed ID: 36635710
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bioinformatics profiling utilized a nine immune-related long noncoding RNA signature as a prognostic target for pancreatic cancer.
    Wei C; Liang Q; Li X; Li H; Liu Y; Huang X; Chen X; Guo Y; Li J
    J Cell Biochem; 2019 Sep; 120(9):14916-14927. PubMed ID: 31016791
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Predictive mutation signature of immunotherapy benefits in NSCLC based on machine learning algorithms.
    Liu Z; Lin G; Yan Z; Li L; Wu X; Shi J; He J; Zhao L; Liang H; Wang W
    Front Immunol; 2022; 13():989275. PubMed ID: 36238300
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comprehensive Evaluation of Machine Learning Models and Gene Expression Signatures for Prostate Cancer Prognosis Using Large Population Cohorts.
    Li R; Zhu J; Zhong WD; Jia Z
    Cancer Res; 2022 May; 82(9):1832-1843. PubMed ID: 35358302
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A nine-consensus-prognostic -gene-based prognostic signature, recognizing the dichotomized subgroups of gastric cancer patients with different clinical outcomes and therapeutic strategies.
    Ji D; Yang Y; Zhou F; Li C
    Front Genet; 2022; 13():909175. PubMed ID: 36226177
    [No Abstract]   [Full Text] [Related]  

  • 27. Machine learning integrations for development of a T-cell-tolerance derived signature to improve the clinical outcomes and precision treatment of hepatocellular carcinoma.
    Li J; Chen J; Tao Q; Zheng J; Zhou Z
    Am J Cancer Res; 2023; 13(1):66-85. PubMed ID: 36777501
    [TBL] [Abstract][Full Text] [Related]  

  • 28. NCC-AUC: an AUC optimization method to identify multi-biomarker panel for cancer prognosis from genomic and clinical data.
    Zou M; Liu Z; Zhang XS; Wang Y
    Bioinformatics; 2015 Oct; 31(20):3330-8. PubMed ID: 26092859
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study.
    Sun R; Limkin EJ; Vakalopoulou M; Dercle L; Champiat S; Han SR; Verlingue L; Brandao D; Lancia A; Ammari S; Hollebecque A; Scoazec JY; Marabelle A; Massard C; Soria JC; Robert C; Paragios N; Deutsch E; Ferté C
    Lancet Oncol; 2018 Sep; 19(9):1180-1191. PubMed ID: 30120041
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Novel and Robust Long Noncoding RNA Panel to Predict the Prognosis of Pancreatic Cancer.
    Li M; Li H; Chen Q; Wu W; Chen X; Ran L; Si G; Tan X
    DNA Cell Biol; 2020 Jul; 39(7):1282-1289. PubMed ID: 32522048
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prediction of immune checkpoint inhibition with immune oncology-related gene expression in gastrointestinal cancer using a machine learning classifier.
    Lu Z; Chen H; Jiao X; Zhou W; Han W; Li S; Liu C; Gong J; Li J; Zhang X; Wang X; Peng Z; Qi C; Wang Z; Li Y; Li J; Li Y; Brock M; Zhang H; Shen L
    J Immunother Cancer; 2020 Aug; 8(2):. PubMed ID: 32792359
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Magnetic resonance imaging radiomics predicts preoperative axillary lymph node metastasis to support surgical decisions and is associated with tumor microenvironment in invasive breast cancer: A machine learning, multicenter study.
    Yu Y; He Z; Ouyang J; Tan Y; Chen Y; Gu Y; Mao L; Ren W; Wang J; Lin L; Wu Z; Liu J; Ou Q; Hu Q; Li A; Chen K; Li C; Lu N; Li X; Su F; Liu Q; Xie C; Yao H
    EBioMedicine; 2021 Jul; 69():103460. PubMed ID: 34233259
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Predicted Prognosis of Patients with Pancreatic Cancer by Machine Learning.
    Yokoyama S; Hamada T; Higashi M; Matsuo K; Maemura K; Kurahara H; Horinouchi M; Hiraki T; Sugimoto T; Akahane T; Yonezawa S; Kornmann M; Batra SK; Hollingsworth MA; Tanimoto A
    Clin Cancer Res; 2020 May; 26(10):2411-2421. PubMed ID: 31992588
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improved personalized survival prediction of patients with diffuse large B-cell Lymphoma using gene expression profiling.
    Mosquera Orgueira A; Díaz Arias JÁ; Cid López M; Peleteiro Raíndo A; Antelo Rodríguez B; Aliste Santos C; Alonso Vence N; Bendaña López Á; Abuín Blanco A; Bao Pérez L; González Pérez MS; Pérez Encinas MM; Fraga Rodríguez MF; Bello López JL
    BMC Cancer; 2020 Oct; 20(1):1017. PubMed ID: 33087075
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identifying and optimizing human endometrial gene expression signatures for endometrial dating.
    Diaz-Gimeno P; Sebastian-Leon P; Sanchez-Reyes JM; Spath K; Aleman A; Vidal C; Devesa-Peiro A; Labarta E; Sánchez-Ribas I; Ferrando M; Kohls G; García-Velasco JA; Seli E; Wells D; Pellicer A
    Hum Reprod; 2022 Jan; 37(2):284-296. PubMed ID: 34875061
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Using a machine learning approach to identify key prognostic molecules for esophageal squamous cell carcinoma.
    Li MX; Sun XM; Cheng WG; Ruan HJ; Liu K; Chen P; Xu HJ; Gao SG; Feng XS; Qi YJ
    BMC Cancer; 2021 Aug; 21(1):906. PubMed ID: 34372798
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multi-omics landscape and clinical significance of a
    Wang L; Liu Z; Zhu R; Liang R; Wang W; Li J; Zhang Y; Guo C; Han X; Sun Y
    Comput Struct Biotechnol J; 2022; 20():1154-1167. PubMed ID: 35317237
    [No Abstract]   [Full Text] [Related]  

  • 38. Stromal Gene Expression is Predictive for Metastatic Primary Prostate Cancer.
    Mo F; Lin D; Takhar M; Ramnarine VR; Dong X; Bell RH; Volik SV; Wang K; Xue H; Wang Y; Haegert A; Anderson S; Brahmbhatt S; Erho N; Wang X; Gout PW; Morris J; Karnes RJ; Den RB; Klein EA; Schaeffer EM; Ross A; Ren S; Sahinalp SC; Li Y; Xu X; Wang J; Wang J; Gleave ME; Davicioni E; Sun Y; Wang Y; Collins CC
    Eur Urol; 2018 Apr; 73(4):524-532. PubMed ID: 28330676
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Integrating MicroRNA Expression Profiling Studies to Systematically Evaluate the Diagnostic Value of MicroRNAs in Pancreatic Cancer and Validate Their Prognostic Significance with the Cancer Genome Atlas Data.
    Zhang Z; Pan B; Lv S; Ji Z; Wu Q; Lang R; He Q; Zhao X
    Cell Physiol Biochem; 2018; 49(2):678-695. PubMed ID: 30165365
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Up-regulation of S100P predicts the poor long-term survival and construction of prognostic signature for survival and immunotherapy in patients with pancreatic cancer.
    Zou W; Li L; Wang Z; Jiang N; Wang F; Hu M; Liu R
    Bioengineered; 2021 Dec; 12(1):9006-9020. PubMed ID: 34654352
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.