BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 36282204)

  • 1. Cells Adapt to Resist Fluoride through Metabolic Deactivation and Intracellular Acidification.
    Johnston NR; Cline G; Strobel SA
    Chem Res Toxicol; 2022 Nov; 35(11):2085-2096. PubMed ID: 36282204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Eukaryotic resistance to fluoride toxicity mediated by a widespread family of fluoride export proteins.
    Li S; Smith KD; Davis JH; Gordon PB; Breaker RR; Strobel SA
    Proc Natl Acad Sci U S A; 2013 Nov; 110(47):19018-23. PubMed ID: 24173035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Yeast Fex1p Is a Constitutively Expressed Fluoride Channel with Functional Asymmetry of Its Two Homologous Domains.
    Smith KD; Gordon PB; Rivetta A; Allen KE; Berbasova T; Slayman C; Strobel SA
    J Biol Chem; 2015 Aug; 290(32):19874-87. PubMed ID: 26055717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitrate and Phosphate Transporters Rescue Fluoride Toxicity in Yeast.
    Johnston NR; Strobel SA
    Chem Res Toxicol; 2019 Nov; 32(11):2305-2319. PubMed ID: 31576749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluoride transport in Arabidopsis thaliana plants is impaired in Fluoride EXporter (FEX) mutants.
    Tausta SL; Fontaine K; Hillmer AT; Strobel SA
    Plant Mol Biol; 2024 Feb; 114(1):17. PubMed ID: 38342783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The fluoride transporter FLUORIDE EXPORTER (FEX) is the major mechanism of tolerance to fluoride toxicity in plants1.
    Tausta SL; Berbasova T; Peverelli M; Strobel SA
    Plant Physiol; 2021 Mar; ():. PubMed ID: 33787927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The fluoride transporter FLUORIDE EXPORTER (FEX) is the major mechanism of tolerance to fluoride toxicity in plants.
    Tausta SL; Berbasova T; Peverelli M; Strobel SA
    Plant Physiol; 2021 Mar; 186(2):1143-58. PubMed ID: 33744970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vacuolar H+-ATPase Protects Saccharomyces cerevisiae Cells against Ethanol-Induced Oxidative and Cell Wall Stresses.
    Charoenbhakdi S; Dokpikul T; Burphan T; Techo T; Auesukaree C
    Appl Environ Microbiol; 2016 May; 82(10):3121-3130. PubMed ID: 26994074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional and molecular characterization of fluoride exporter (FEX) from rice and its constitutive overexpression in Nicotiana benthamiana to promote fluoride tolerance.
    Banerjee A; Roychoudhury A
    Plant Cell Rep; 2021 Sep; 40(9):1751-1772. PubMed ID: 34173048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterologous transporters from anaerobic fungi bolster fluoride tolerance in
    Seppälä S; Yoo JI; Yur D; O'Malley MA
    Metab Eng Commun; 2019 Dec; 9():e00091. PubMed ID: 31016136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Saccharomyces cerevisiae multidrug transporter Qdr2p (Yil121wp): localization and function as a quinidine resistance determinant.
    Vargas RC; Tenreiro S; Teixeira MC; Fernandes AR; Sá-Correia I
    Antimicrob Agents Chemother; 2004 Jul; 48(7):2531-7. PubMed ID: 15215105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel role for protein kinase Gcn2 in yeast tolerance to intracellular acid stress.
    Hueso G; Aparicio-Sanchis R; Montesinos C; Lorenz S; Murguía JR; Serrano R
    Biochem J; 2012 Jan; 441(1):255-64. PubMed ID: 21919885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GPCR-FEX: A Fluoride-Based Selection System for Rapid GPCR Screening and Engineering.
    Yoo JI; Navaratna TA; Kolence P; O'Malley MA
    ACS Synth Biol; 2022 Jan; 11(1):39-45. PubMed ID: 34979077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of glycerol transporters in yeast cells in various physiological and stress conditions.
    Duskova M; Borovikova D; Herynkova P; Rapoport A; Sychrova H
    FEMS Microbiol Lett; 2015 Jan; 362(3):1-8. PubMed ID: 25673653
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extracellular glutathione fermentation using engineered Saccharomyces cerevisiae expressing a novel glutathione exporter.
    Kiriyama K; Hara KY; Kondo A
    Appl Microbiol Biotechnol; 2012 Nov; 96(4):1021-7. PubMed ID: 22526809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An assay for functional xylose transporters in Saccharomyces cerevisiae.
    Wang C; Shen Y; Hou J; Suo F; Bao X
    Anal Biochem; 2013 Nov; 442(2):241-8. PubMed ID: 23928049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of residues critical for proton-coupled glutathione translocation in the yeast glutathione transporter, Hgt1p.
    Zulkifli M; Bachhawat AK
    Biochem J; 2017 May; 474(11):1807-1821. PubMed ID: 28389436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Saccharomyces cerevisiae Bor1p is a boron exporter and a key determinant of boron tolerance.
    Takano J; Kobayashi M; Noda Y; Fujiwara T
    FEMS Microbiol Lett; 2007 Feb; 267(2):230-5. PubMed ID: 17166224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Saccharomyces cerevisiae glycerol/H+ symporter Stl1p is essential for cold/near-freeze and freeze stress adaptation. A simple recipe with high biotechnological potential is given.
    Tulha J; Lima A; Lucas C; Ferreira C
    Microb Cell Fact; 2010 Nov; 9():82. PubMed ID: 21047428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overexpression of ESBP6 improves lactic acid resistance and production in Saccharomyces cerevisiae.
    Sugiyama M; Akase SP; Nakanishi R; Kaneko Y; Harashima S
    J Biosci Bioeng; 2016 Oct; 122(4):415-20. PubMed ID: 27102264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.