BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 36282391)

  • 1. Dissolved oxygen gradient on three dimensionally printed microfluidic platform for studying its effect on fish at three levels: cell, embryo, and larva.
    Liu P; Fu L; Li B; Man M; Ji Y; Kang Q; Sun X; Shen D; Chen L
    Environ Sci Pollut Res Int; 2023 Feb; 30(8):21978-21989. PubMed ID: 36282391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three dimensionally printed nitrocellulose-based microfluidic platform for investigating the effect of oxygen gradient on cells.
    Liu P; Fu L; Song Z; Man M; Yuan H; Zheng X; Kang Q; Shen D; Song J; Li B; Chen L
    Analyst; 2021 Sep; 146(17):5255-5263. PubMed ID: 34324622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid Three Dimensionally Printed Paper-Based Microfluidic Platform for Investigating a Cell's Apoptosis and Intracellular Cross-Talk.
    Liu P; Li B; Fu L; Huang Y; Man M; Qi J; Sun X; Kang Q; Shen D; Chen L
    ACS Sens; 2020 Feb; 5(2):464-473. PubMed ID: 32013403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Bubble-Free Microfluidic Device for Easy-to-Operate Immobilization, Culturing and Monitoring of Zebrafish Embryos.
    Zhu Z; Geng Y; Yuan Z; Ren S; Liu M; Meng Z; Pan D
    Micromachines (Basel); 2019 Feb; 10(3):. PubMed ID: 30823425
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A microfluidic system for studying the behavior of zebrafish larvae under acute hypoxia.
    Erickstad M; Hale LA; Chalasani SH; Groisman A
    Lab Chip; 2015 Feb; 15(3):857-66. PubMed ID: 25490410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hypoxic Treatment of Zebrafish Embryos and Larvae.
    Kamei H; Duan C
    Methods Mol Biol; 2018; 1742():195-203. PubMed ID: 29330801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated Lab-on-a-Chip Technology for Fish Embryo Toxicity Tests Performed under Continuous Microperfusion (μFET).
    Zhu F; Wigh A; Friedrich T; Devaux A; Bony S; Nugegoda D; Kaslin J; Wlodkowic D
    Environ Sci Technol; 2015 Dec; 49(24):14570-8. PubMed ID: 26506399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zebrafish on a chip: a novel platform for real-time monitoring of drug-induced developmental toxicity.
    Li Y; Yang F; Chen Z; Shi L; Zhang B; Pan J; Li X; Sun D; Yang H
    PLoS One; 2014; 9(4):e94792. PubMed ID: 24733308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Additives migrating from 3D-printed plastic induce developmental toxicity and neuro-behavioural alterations in early life zebrafish (Danio rerio).
    Walpitagama M; Carve M; Douek AM; Trestrail C; Bai Y; Kaslin J; Wlodkowic D
    Aquat Toxicol; 2019 Aug; 213():105227. PubMed ID: 31226596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Negligible-cost microfluidic device fabrication using 3D-printed interconnecting channel scaffolds.
    Felton H; Hughes R; Diaz-Gaxiola A
    PLoS One; 2021; 16(2):e0245206. PubMed ID: 33534849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High performance inkjet printed embedded electrochemical sensors for monitoring hypoxia in a gut bilayer microfluidic chip.
    Khalid MAU; Kim KH; Chethikkattuveli Salih AR; Hyun K; Park SH; Kang B; Soomro AM; Ali M; Jun Y; Huh D; Cho H; Choi KH
    Lab Chip; 2022 May; 22(9):1764-1778. PubMed ID: 35244110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A microfluidic oxygen sink to create a targeted cellular hypoxic microenvironment under ambient atmospheric conditions.
    Barmaki S; Jokinen V; Obermaier D; Blokhina D; Korhonen M; Ras RHA; Vuola J; Franssila S; Kankuri E
    Acta Biomater; 2018 Jun; 73():167-179. PubMed ID: 29649636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Designing microfluidic devices for behavioral screening of multiple zebrafish larvae.
    Khalili A; van Wijngaarden E; Youssef K; Zoidl GR; Rezai P
    Biotechnol J; 2022 Jan; 17(1):e2100076. PubMed ID: 34480402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct 3D printed biocompatible microfluidics: assessment of human mesenchymal stem cell differentiation and cytotoxic drug screening in a dynamic culture system.
    Riester O; Laufer S; Deigner HP
    J Nanobiotechnology; 2022 Dec; 20(1):540. PubMed ID: 36575530
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of biocompatibility of 3D printed photopolymers using zebrafish embryo toxicity assays.
    Macdonald NP; Zhu F; Hall CJ; Reboud J; Crosier PS; Patton EE; Wlodkowic D; Cooper JM
    Lab Chip; 2016 Jan; 16(2):291-7. PubMed ID: 26646354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous screening of zebrafish larvae cardiac and respiratory functions: a microfluidic multi-phenotypic approach.
    Khalili A; van Wijngaarden E; Zoidl GR; Rezai P
    Integr Biol (Camb); 2022 Dec; 14(7):162-170. PubMed ID: 36416255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An automated 3D-printed smartphone platform integrated with optoelectrowetting (OEW) microfluidic chip for on-site monitoring of viable algae in water.
    Lee S; Thio SK; Park SY; Bae S
    Harmful Algae; 2019 Sep; 88():101638. PubMed ID: 31582154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D-printed microfluidics integrated with optical nanostructured porous aptasensors for protein detection.
    Arshavsky-Graham S; Enders A; Ackerman S; Bahnemann J; Segal E
    Mikrochim Acta; 2021 Feb; 188(3):67. PubMed ID: 33543321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Progressive hypoxia-on-a-chip: An in vitro oxygen gradient model for capturing the effects of hypoxia on primary hepatocytes in health and disease.
    Kang YBA; Eo J; Bulutoglu B; Yarmush ML; Usta OB
    Biotechnol Bioeng; 2020 Mar; 117(3):763-775. PubMed ID: 31736056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fish-on-a-chip: microfluidics for zebrafish research.
    Yang F; Gao C; Wang P; Zhang GJ; Chen Z
    Lab Chip; 2016 Apr; 16(7):1106-25. PubMed ID: 26923141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.