These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 36282573)

  • 1. Continuous and First-Order Liquid-Solid Phase Transitions in Two-Dimensional Water.
    Ma N; Zhao X; Liang X; Zhu W; Sun Y; Zhao W; Zeng XC
    J Phys Chem B; 2022 Nov; 126(43):8892-8899. PubMed ID: 36282573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly confined water: two-dimensional ice, amorphous ice, and clathrate hydrates.
    Zhao WH; Wang L; Bai J; Yuan LF; Yang J; Zeng XC
    Acc Chem Res; 2014 Aug; 47(8):2505-13. PubMed ID: 25088018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water in Inhomogeneous Nanoconfinement: Coexistence of Multilayered Liquid and Transition to Ice Nanoribbons.
    Qiu H; Zeng XC; Guo W
    ACS Nano; 2015 Oct; 9(10):9877-84. PubMed ID: 26348704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polymorphism and polyamorphism in bilayer water confined to slit nanopore under high pressure.
    Bai J; Zeng XC
    Proc Natl Acad Sci U S A; 2012 Dec; 109(52):21240-5. PubMed ID: 23236178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase behaviors of deeply supercooled bilayer water unseen in bulk water.
    Kaneko T; Bai J; Akimoto T; Francisco JS; Yasuoka K; Zeng XC
    Proc Natl Acad Sci U S A; 2018 May; 115(19):4839-4844. PubMed ID: 29691325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Replica exchange MD simulations of two-dimensional water in graphene nanocapillaries: rhombic versus square structures, proton ordering, and phase transitions.
    Li S; Schmidt B
    Phys Chem Chem Phys; 2019 Aug; 21(32):17640-17654. PubMed ID: 31364628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Liquid-solid and solid-solid phase transition of monolayer water: high-density rhombic monolayer ice.
    Kaneko T; Bai J; Yasuoka K; Mitsutake A; Zeng XC
    J Chem Phys; 2014 May; 140(18):184507. PubMed ID: 24832288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Freezing Transitions of Nanoconfined Coarse-Grained Water Show Subtle Dependence on Confining Environment.
    Lu Q; Straub JE
    J Phys Chem B; 2016 Mar; 120(9):2517-25. PubMed ID: 26906259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Buckling failure of square ice-nanotube arrays constrained in graphene nanocapillaries.
    Zhu Y; Wang F; Wu H
    J Chem Phys; 2016 Aug; 145(5):054704. PubMed ID: 27497569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence of Formation of 1-10 nm Diameter Ice Nanotubes in Double-Walled Carbon Nanotube Capillaries.
    Liu Y; Jiang J; Pu Y; Francisco JS; Zeng XC
    ACS Nano; 2023 Apr; 17(7):6922-6931. PubMed ID: 36940168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase transitions induced by nanoconfinement in liquid water.
    Giovambattista N; Rossky PJ; Debenedetti PG
    Phys Rev Lett; 2009 Feb; 102(5):050603. PubMed ID: 19257497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First-order transition in confined water between high-density liquid and low-density amorphous phases.
    Koga K; Tanaka H; Zeng XC
    Nature; 2000 Nov; 408(6812):564-7. PubMed ID: 11117739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrofreezing of confined water.
    Zangi R; Mark AE
    J Chem Phys; 2004 Apr; 120(15):7123-30. PubMed ID: 15267616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Superheating of monolayer ice in graphene nanocapillaries.
    Zhu Y; Wang F; Wu H
    J Chem Phys; 2017 Apr; 146(13):134703. PubMed ID: 28390346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New Computational Approach to Determine Liquid-Solid Phase Equilibria of Water Confined to Slit Nanopores.
    Kaneko T; Bai J; Yasuoka K; Mitsutake A; Zeng XC
    J Chem Theory Comput; 2013 Aug; 9(8):3299-310. PubMed ID: 26584089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of nanoscale confinement on freezing of modified water at room temperature and ambient pressure.
    Deshmukh S; Kamath G; Sankaranarayanan SK
    Chemphyschem; 2014 Jun; 15(8):1632-42. PubMed ID: 24715572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. First-Principles Molecular Dynamics Simulations of the Spontaneous Freezing Transition of 2D Water in a Nanoslit.
    Jiang J; Gao Y; Zhu W; Liu Y; Zhu C; Francisco JS; Zeng XC
    J Am Chem Soc; 2021 Jun; 143(21):8177-8183. PubMed ID: 34008407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous melting through a hexatic phase in confined bilayer water.
    Zubeltzu J; Corsetti F; Fernández-Serra MV; Artacho E
    Phys Rev E; 2016 Jun; 93(6):062137. PubMed ID: 27415238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-dimensional interlocked pentagonal bilayer ice: how do water molecules form a hydrogen bonding network?
    Zhu W; Zhao WH; Wang L; Yin D; Jia M; Yang J; Zeng XC; Yuan LF
    Phys Chem Chem Phys; 2016 Jun; 18(21):14216-21. PubMed ID: 27063210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ice-Liquid Oscillations in Nanoconfined Water.
    Kastelowitz N; Molinero V
    ACS Nano; 2018 Aug; 12(8):8234-8239. PubMed ID: 30024723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.