BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 36282843)

  • 1. Identifying the critical state of complex biological systems by the directed-network rank score method.
    Zhong J; Han C; Wang Y; Chen P; Liu R
    Bioinformatics; 2022 Dec; 38(24):5398-5405. PubMed ID: 36282843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SPNE: sample-perturbed network entropy for revealing critical states of complex biological systems.
    Zhong J; Ding D; Liu J; Liu R; Chen P
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36705581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. scGET: Predicting Cell Fate Transition During Early Embryonic Development by Single-cell Graph Entropy.
    Zhong J; Han C; Zhang X; Chen P; Liu R
    Genomics Proteomics Bioinformatics; 2021 Jun; 19(3):461-474. PubMed ID: 34954425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detecting critical state before phase transition of complex biological systems by hidden Markov model.
    Chen P; Liu R; Li Y; Chen L
    Bioinformatics; 2016 Jul; 32(14):2143-50. PubMed ID: 27153710
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CPMI: comprehensive neighborhood-based perturbed mutual information for identifying critical states of complex biological processes.
    Ren J; Li P; Yan J
    BMC Bioinformatics; 2024 Jun; 25(1):215. PubMed ID: 38879513
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying the critical states of complex diseases by the dynamic change of multivariate distribution.
    Peng H; Zhong J; Chen P; Liu R
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35598334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. scCNC: a method based on capsule network for clustering scRNA-seq data.
    Wang HY; Zhao JP; Zheng CH; Su YS
    Bioinformatics; 2022 Aug; 38(15):3703-3709. PubMed ID: 35699473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. propeller: testing for differences in cell type proportions in single cell data.
    Phipson B; Sim CB; Porrello ER; Hewitt AW; Powell J; Oshlack A
    Bioinformatics; 2022 Oct; 38(20):4720-4726. PubMed ID: 36005887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CStreet: a computed Cell State trajectory inference method for time-series single-cell RNA sequencing data.
    Zhao C; Xiu W; Hua Y; Zhang N; Zhang Y
    Bioinformatics; 2021 Nov; 37(21):3774-3780. PubMed ID: 34196686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ASAP: a web-based platform for the analysis and interactive visualization of single-cell RNA-seq data.
    Gardeux V; David FPA; Shajkofci A; Schwalie PC; Deplancke B
    Bioinformatics; 2017 Oct; 33(19):3123-3125. PubMed ID: 28541377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene regulation inference from single-cell RNA-seq data with linear differential equations and velocity inference.
    Aubin-Frankowski PC; Vert JP
    Bioinformatics; 2020 Sep; 36(18):4774-4780. PubMed ID: 33026066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ASURAT: functional annotation-driven unsupervised clustering of single-cell transcriptomes.
    Iida K; Kondo J; Wibisana JN; Inoue M; Okada M
    Bioinformatics; 2022 Sep; 38(18):4330-4336. PubMed ID: 35924984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detecting the tipping points in a three-state model of complex diseases by temporal differential networks.
    Chen P; Li Y; Liu X; Liu R; Chen L
    J Transl Med; 2017 Oct; 15(1):217. PubMed ID: 29073904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SPARSim single cell: a count data simulator for scRNA-seq data.
    Baruzzo G; Patuzzi I; Di Camillo B
    Bioinformatics; 2020 Mar; 36(5):1468-1475. PubMed ID: 31598633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scalable preprocessing for sparse scRNA-seq data exploiting prior knowledge.
    Mukherjee S; Zhang Y; Fan J; Seelig G; Kannan S
    Bioinformatics; 2018 Jul; 34(13):i124-i132. PubMed ID: 29949988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DensityPath: an algorithm to visualize and reconstruct cell state-transition path on density landscape for single-cell RNA sequencing data.
    Chen Z; An S; Bai X; Gong F; Ma L; Wan L
    Bioinformatics; 2019 Aug; 35(15):2593-2601. PubMed ID: 30535348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-negative Independent Factor Analysis disentangles discrete and continuous sources of variation in scRNA-seq data.
    Mao W; Pouyan MB; Kostka D; Chikina M
    Bioinformatics; 2022 May; 38(10):2749-2756. PubMed ID: 35561207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell-level somatic mutation detection from single-cell RNA sequencing.
    Vu TN; Nguyen HN; Calza S; Kalari KR; Wang L; Pawitan Y
    Bioinformatics; 2019 Nov; 35(22):4679-4687. PubMed ID: 31028395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ZIAQ: a quantile regression method for differential expression analysis of single-cell RNA-seq data.
    Zhang W; Wei Y; Zhang D; Xu EY
    Bioinformatics; 2020 May; 36(10):3124-3130. PubMed ID: 32053182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. scHinter: imputing dropout events for single-cell RNA-seq data with limited sample size.
    Ye P; Ye W; Ye C; Li S; Ye L; Ji G; Wu X
    Bioinformatics; 2020 Feb; 36(3):789-797. PubMed ID: 31392316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.