BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 36282917)

  • 1. SWAP1-SFPS-RRC1 splicing factor complex modulates pre-mRNA splicing to promote photomorphogenesis in
    Kathare PK; Xin R; Ganesan AS; June VM; Reddy ASN; Huq E
    Proc Natl Acad Sci U S A; 2022 Nov; 119(44):e2214565119. PubMed ID: 36282917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coordinated Regulation of Pre-mRNA Splicing by the SFPS-RRC1 Complex to Promote Photomorphogenesis.
    Xin R; Kathare PK; Huq E
    Plant Cell; 2019 Sep; 31(9):2052-2069. PubMed ID: 31266850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SPF45-related splicing factor for phytochrome signaling promotes photomorphogenesis by regulating pre-mRNA splicing in
    Xin R; Zhu L; Salomé PA; Mancini E; Marshall CM; Harmon FG; Yanovsky MJ; Weigel D; Huq E
    Proc Natl Acad Sci U S A; 2017 Aug; 114(33):E7018-E7027. PubMed ID: 28760995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The RS domain of Arabidopsis splicing factor RRC1 is required for phytochrome B signal transduction.
    Shikata H; Shibata M; Ushijima T; Nakashima M; Kong SG; Matsuoka K; Lin C; Matsushita T
    Plant J; 2012 Jun; 70(5):727-38. PubMed ID: 22324426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epidermal phyB requires RRC1 to promote light responses by activating the circadian rhythm.
    Kim H; Kim J; Choi G
    New Phytol; 2023 Apr; 238(2):705-723. PubMed ID: 36651061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SWELLMAP 2, a phyB-Interacting Splicing Factor, Negatively Regulates Seedling Photomorphogenesis in
    Yan T; Heng Y; Wang W; Li J; Deng XW
    Front Plant Sci; 2022; 13():836519. PubMed ID: 35222493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation and characterization of phyC mutants in Arabidopsis reveals complex crosstalk between phytochrome signaling pathways.
    Monte E; Alonso JM; Ecker JR; Zhang Y; Li X; Young J; Austin-Phillips S; Quail PH
    Plant Cell; 2003 Sep; 15(9):1962-80. PubMed ID: 12953104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deletion of the RS domain of RRC1 impairs phytochrome B signaling in Arabidopsis.
    Shikata H; Nakashima M; Matsuoka K; Matsushita T
    Plant Signal Behav; 2012 Aug; 7(8):933-6. PubMed ID: 22751357
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light-regulated pre-mRNA splicing in plants.
    Kathare PK; Huq E
    Curr Opin Plant Biol; 2021 Oct; 63():102037. PubMed ID: 33823333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phytochrome-induced SIG2 expression contributes to photoregulation of phytochrome signalling and photomorphogenesis in Arabidopsis thaliana.
    Oh S; Montgomery BL
    J Exp Bot; 2013 Dec; 64(18):5457-72. PubMed ID: 24078666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Red-light-dependent interaction of phyB with SPA1 promotes COP1-SPA1 dissociation and photomorphogenic development in Arabidopsis.
    Lu XD; Zhou CM; Xu PB; Luo Q; Lian HL; Yang HQ
    Mol Plant; 2015 Mar; 8(3):467-78. PubMed ID: 25744387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light-induced phosphorylation and degradation of the negative regulator PHYTOCHROME-INTERACTING FACTOR1 from Arabidopsis depend upon its direct physical interactions with photoactivated phytochromes.
    Shen H; Zhu L; Castillon A; Majee M; Downie B; Huq E
    Plant Cell; 2008 Jun; 20(6):1586-602. PubMed ID: 18539749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Arabidopsis phytochrome-interacting factor PIF7, together with PIF3 and PIF4, regulates responses to prolonged red light by modulating phyB levels.
    Leivar P; Monte E; Al-Sady B; Carle C; Storer A; Alonso JM; Ecker JR; Quail PH
    Plant Cell; 2008 Feb; 20(2):337-52. PubMed ID: 18252845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergistic and Antagonistic Action of Phytochrome (Phy) A and PhyB during Seedling De-Etiolation in Arabidopsis thaliana.
    Su L; Hou P; Song M; Zheng X; Guo L; Xiao Y; Yan L; Li W; Yang J
    Int J Mol Sci; 2015 May; 16(6):12199-212. PubMed ID: 26030677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Blue light induces degradation of the negative regulator phytochrome interacting factor 1 to promote photomorphogenic development of Arabidopsis seedlings.
    Castillon A; Shen H; Huq E
    Genetics; 2009 May; 182(1):161-71. PubMed ID: 19255368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoactivated phytochromes interact with HEMERA and promote its accumulation to establish photomorphogenesis in Arabidopsis.
    Galvão RM; Li M; Kothadia SM; Haskel JD; Decker PV; Van Buskirk EK; Chen M
    Genes Dev; 2012 Aug; 26(16):1851-63. PubMed ID: 22895253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The light-response BTB1 and BTB2 proteins assemble nuclear ubiquitin ligases that modify phytochrome B and D signaling in Arabidopsis.
    Christians MJ; Gingerich DJ; Hua Z; Lauer TD; Vierstra RD
    Plant Physiol; 2012 Sep; 160(1):118-34. PubMed ID: 22732244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arabidopsis phytochrome B promotes SPA1 nuclear accumulation to repress photomorphogenesis under far-red light.
    Zheng X; Wu S; Zhai H; Zhou P; Song M; Su L; Xi Y; Li Z; Cai Y; Meng F; Yang L; Wang H; Yang J
    Plant Cell; 2013 Jan; 25(1):115-33. PubMed ID: 23371951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The phytochrome-interacting vascular plant one-zinc finger1 and VOZ2 redundantly regulate flowering in Arabidopsis.
    Yasui Y; Mukougawa K; Uemoto M; Yokofuji A; Suzuri R; Nishitani A; Kohchi T
    Plant Cell; 2012 Aug; 24(8):3248-63. PubMed ID: 22904146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SPATULA regulates floral transition and photomorphogenesis in a PHYTOCHROME B-dependent manner in Arabidopsis.
    Wu M; Upreti S; Yan A; Wakeel A; Wu J; Ge S; Liu Y; Liu B; Gan Y
    Biochem Biophys Res Commun; 2018 Sep; 503(4):2380-2385. PubMed ID: 29966653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.