These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 36283190)

  • 1. Nicotinamide adenine dinucleotide hydrogen regeneration in a microbial electrosynthesis system by Enterobacter aerogenes.
    Barin R; Biria D; Ali Asadollahi M
    Bioelectrochemistry; 2023 Feb; 149():108309. PubMed ID: 36283190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alteration of hydrogen metabolism of ldh-deleted Enterobacter aerogenes by overexpression of NAD+-dependent formate dehydrogenase.
    Lu Y; Zhao H; Zhang C; Lai Q; Wu X; Xing XH
    Appl Microbiol Biotechnol; 2010 Mar; 86(1):255-62. PubMed ID: 19830418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent Progress and Perspectives on Electrochemical Regeneration of Reduced Nicotinamide Adenine Dinucleotide (NADH).
    Immanuel S; Sivasubramanian R; Gul R; Dar MA
    Chem Asian J; 2020 Dec; 15(24):4256-4270. PubMed ID: 33164351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New approaches to NAD(P)H regeneration in the biosynthesis systems.
    Han L; Liang B
    World J Microbiol Biotechnol; 2018 Sep; 34(10):141. PubMed ID: 30203299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic engineering of Escherichia coli: increase of NADH availability by overexpressing an NAD(+)-dependent formate dehydrogenase.
    Berríos-Rivera SJ; Bennett GN; San KY
    Metab Eng; 2002 Jul; 4(3):217-29. PubMed ID: 12616691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of electrode potential, pH and NAD
    Aamer E; Thöming J; Baune M; Reimer N; Dringen R; Romero M; Bösing I
    Sci Rep; 2022 Sep; 12(1):16380. PubMed ID: 36180530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of NAD+-dependent formate dehydrogenase in Enterobacter aerogenes and its involvement in anaerobic metabolism and H2 production.
    Lu Y; Zhao H; Zhang C; Lai Q; Wu X; Xing XH
    Biotechnol Lett; 2009 Oct; 31(10):1525-30. PubMed ID: 19533026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutational analysis of the hyc-operon determining the relationship between hydrogenase-3 and NADH pathway in Enterobacter aerogenes.
    Pi J; Jawed M; Wang J; Xu L; Yan Y
    Enzyme Microb Technol; 2016 Jan; 82():1-7. PubMed ID: 26672442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical regeneration of nicotinamide adenine dinucleotide.
    Aizawa M; Coughlin RW; Charles M
    Biochim Biophys Acta; 1975 Apr; 385(2):362-70. PubMed ID: 164931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced dark hydrogen fermentation by addition of ferric oxide nanoparticles using Enterobacter aerogenes.
    Lin R; Cheng J; Ding L; Song W; Liu M; Zhou J; Cen K
    Bioresour Technol; 2016 May; 207():213-9. PubMed ID: 26890796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extraction and Quantitation of Nicotinamide Adenine Dinucleotide Redox Cofactors.
    Lu W; Wang L; Chen L; Hui S; Rabinowitz JD
    Antioxid Redox Signal; 2018 Jan; 28(3):167-179. PubMed ID: 28497978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of Enterobacter aerogenes fuel cells: from in situ biohydrogen oxidization to direct electroactive biofilm.
    Zhuang L; Zhou S; Yuan Y; Liu T; Wu Z; Cheng J
    Bioresour Technol; 2011 Jan; 102(1):284-9. PubMed ID: 20598528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of formate on fermentative hydrogen production by Enterobacter aerogenes.
    Kurokawa T; Tanisho S
    Mar Biotechnol (NY); 2005; 7(2):112-8. PubMed ID: 15830121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioorganometallic chemistry. 13. Regioselective reduction of NAD(+) models, 1-benzylnicotinamde triflate and beta-nicotinamide ribose-5'-methyl phosphate, with in situ generated [CpRh(Bpy)H](+): structure-activity relationships, kinetics, and mechanistic aspects in the formation of the 1,4-NADH derivatives.
    Lo HC; Leiva C; Buriez O; Kerr JB; Olmstead MM; Fish RH
    Inorg Chem; 2001 Dec; 40(26):6705-16. PubMed ID: 11735482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Perturbation of formate pathway and NADH pathway acting on the biohydrogen production.
    Liu D; Sun Y; Li Y; Lu Y
    Sci Rep; 2017 Aug; 7(1):9587. PubMed ID: 28852065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical Bioreactor Technology for Biocatalysis and Microbial Electrosynthesis.
    Morrison C; Heitmann E; Armiger W; Dodds D; Koffas M
    Adv Appl Microbiol; 2018; 105():51-86. PubMed ID: 30342723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of glycerol metabolism in Enterobacter aerogenes NBRC12010 under electrochemical conditions.
    Hatayama K; Yagishita T
    Appl Microbiol Biotechnol; 2009 Jun; 83(4):749-56. PubMed ID: 19352646
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Auxiliary NADH Dehydrogenase Plays a Crucial Role in Redox Homeostasis of Nicotinamide Cofactors in the Absence of the Periplasmic Oxidation System in Gluconobacter oxydans NBRC3293.
    Sriherfyna FH; Matsutani M; Hirano K; Koike H; Kataoka N; Yamashita T; Nakamaru-Ogiso E; Matsushita K; Yakushi T
    Appl Environ Microbiol; 2021 Jan; 87(2):. PubMed ID: 33127815
    [No Abstract]   [Full Text] [Related]  

  • 19. Impairment of NADH dehydrogenase and regulation of anaerobic metabolism by the small RNA RyhB and NadE for improved biohydrogen production in
    Wu Y; Hao Y; Wei X; Shen Q; Ding X; Wang L; Zhao H; Lu Y
    Biotechnol Biofuels; 2017; 10():248. PubMed ID: 29093752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-Guided Design of Formate Dehydrogenase for Regeneration of a Non-Natural Redox Cofactor.
    Guo X; Wang X; Liu Y; Li Q; Wang J; Liu W; Zhao ZK
    Chemistry; 2020 Dec; 26(70):16611-16615. PubMed ID: 32815230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.