These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 36283190)

  • 21. Electrolytic regeneration of the reduced from the oxidized form of immobilized NAD.
    Aizawa M; Coughlin RW; Charles M
    Biotechnol Bioeng; 1976 Feb; 18(2):209-15. PubMed ID: 175864
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regeneration of NADH and ketone hydrogenation by hydrogen with the combination of hydrogenase and alcohol dehydrogenase. Scientific note.
    Okura I; Otsuka K; Nakada N; Hasumi F
    Appl Biochem Biotechnol; 1990; 24-25():425-30. PubMed ID: 2191625
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Polymer-Based Module for NAD
    Ma BC; Caire da Silva L; Jo SM; Wurm FR; Bannwarth MB; Zhang KAI; Sundmacher K; Landfester K
    Chembiochem; 2019 Oct; 20(20):2593-2596. PubMed ID: 30883002
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fine-Tuning the Electrocatalytic Regeneration of NADH Cofactor Using [Rh(Cp*)(bpy)Cl]
    Li W; Zhang C; Zheng Z; Zhang X; Zhang L; Kuhn A
    ACS Appl Mater Interfaces; 2022 Oct; 14(41):46673-46681. PubMed ID: 36215128
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regulation of carbon flux and NADH/NAD
    Lu P; Gao T; Bai R; Yang J; Xu Y; Chu W; Jiang K; Zhang J; Xu F; Zhao H
    J Biotechnol; 2022 Nov; 358():67-75. PubMed ID: 36087783
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Human Urine-Fueled Light-Driven NADH Regeneration for Redox Biocatalysis.
    Choi WS; Lee SH; Ko JW; Park CB
    ChemSusChem; 2016 Jul; 9(13):1559-64. PubMed ID: 27198582
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Circadian tracking of nicotinamide cofactor levels in an immortalized suprachiasmatic nucleus cell line.
    Wise DD; Shear JB
    Neuroscience; 2004; 128(2):263-8. PubMed ID: 15350639
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regeneration of nicotinamide coenzymes: principles and applications for the synthesis of chiral compounds.
    Weckbecker A; Gröger H; Hummel W
    Adv Biochem Eng Biotechnol; 2010; 120():195-242. PubMed ID: 20182929
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Levels of nicotinamide adenine dinucleotide and reduced nicotinamide adenine dinucleotide in facultative bacteria and the effect of oxygen.
    Wimpenny JW; Firth A
    J Bacteriol; 1972 Jul; 111(1):24-32. PubMed ID: 4360220
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhanced hydrogen production of Enterobacter aerogenes mutated by nuclear irradiation.
    Cheng J; Liu M; Song W; Ding L; Liu J; Zhang L; Cen K
    Bioresour Technol; 2017 Mar; 227():50-55. PubMed ID: 28013136
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of increasing NADH availability on the redistribution of metabolic fluxes in Escherichia coli chemostat cultures.
    Berríos-Rivera SJ; Bennett GN; San KY
    Metab Eng; 2002 Jul; 4(3):230-7. PubMed ID: 12616692
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rational design of engineered microbial cell surface multi-enzyme co-display system for sustainable NADH regeneration from low-cost biomass.
    Han L; Liang B; Song J; Liu A
    J Ind Microbiol Biotechnol; 2018 Feb; 45(2):111-121. PubMed ID: 29322283
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improved hydrogen production under microaerophilic conditions by overexpression of polyphosphate kinase in Enterobacter aerogenes.
    Lu Y; Zhang C; Lai Q; Zhao H; Xing XH
    Enzyme Microb Technol; 2011 Feb; 48(2):187-92. PubMed ID: 22112830
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hydrogen evolution of Enterobacter aerogenes depending on culture pH: mechanism of hydrogen evolution from NADH by means of membrane-bound hydrogenase.
    Tanisho S; Kamiya N; Wakao N
    Biochim Biophys Acta; 1989 Jan; 973(1):1-6. PubMed ID: 2643990
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Redox Biocatalysis: Quantitative Comparisons of Nicotinamide Cofactor Regeneration Methods.
    Sharma VK; Hutchison JM; Allgeier AM
    ChemSusChem; 2022 Nov; 15(22):e202200888. PubMed ID: 36129761
    [TBL] [Abstract][Full Text] [Related]  

  • 36. pH-Dependent Flavin Adenine Dinucleotide and Nicotinamide Adenine Dinucleotide Ultraviolet Resonance Raman (UVRR) Spectra at Intracellular Concentration.
    Merk V; Speiser E; Werncke W; Esser N; Kneipp J
    Appl Spectrosc; 2021 Aug; 75(8):994-1002. PubMed ID: 34076541
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Resting Escherichia coli as Chassis for Microbial Electrosynthesis: Production of Chiral Alcohols.
    Mayr JC; Grosch JH; Hartmann L; Rosa LFM; Spiess AC; Harnisch F
    ChemSusChem; 2019 Apr; 12(8):1631-1634. PubMed ID: 30762315
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Flow-injection analysis with electrochemical detection of reduced nicotinamide adenine dinucleotide using 2,6-dichloroindophenol as a redox coupling agent.
    Tang HT; Hajizadeh K; Halsall HB; Heineman WR
    Anal Biochem; 1991 Jan; 192(1):243-50. PubMed ID: 2048728
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Function of ubiquinone in electron transport from reduced nicotinamide adenine dinucleotide to nitrate and oxygen in Aerobacter aerogenes.
    Knook DL; Planta RJ
    J Bacteriol; 1971 Feb; 105(2):483-8. PubMed ID: 4100202
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modular Engineering Intracellular NADH Regeneration Boosts Extracellular Electron Transfer of Shewanella oneidensis MR-1.
    Li F; Li Y; Sun L; Chen X; An X; Yin C; Cao Y; Wu H; Song H
    ACS Synth Biol; 2018 Mar; 7(3):885-895. PubMed ID: 29429342
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.