BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 36283303)

  • 21. Control of litchi downy blight by zeamines produced by Dickeya zeae.
    Liao L; Zhou J; Wang H; He F; Liu S; Jiang Z; Chen S; Zhang LH
    Sci Rep; 2015 Oct; 5():15719. PubMed ID: 26499339
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A C
    Zhu H; Situ J; Guan T; Dou Z; Kong G; Jiang Z; Xi P
    Int J Mol Sci; 2022 Mar; 23(5):. PubMed ID: 35269874
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characteristics of famoxadone-resistant mutants of Phytophthora litchii and their effect on lychee fruit quality.
    Miao J; Gao X; Tang Y; Dai T; Liu X
    Int J Food Microbiol; 2024 Feb; 411():110528. PubMed ID: 38118356
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transcriptome analysis of Phytophthora litchii reveals pathogenicity arsenals and confirms taxonomic status.
    Sun J; Gao Z; Zhang X; Zou X; Cao L; Wang J
    PLoS One; 2017; 12(6):e0178245. PubMed ID: 28570700
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A New Insight into 6-Pentyl-2H-pyran-2-one against
    Wu Y; Li X; Dong L; Liu T; Tang Z; Lin R; Norvienyeku J; Xing M
    J Fungi (Basel); 2023 Aug; 9(8):. PubMed ID: 37623635
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Oomycete pathogen pectin acetylesterase targets host lipid transfer protein to reduce salicylic acid signaling.
    Situ J; Song Y; Feng D; Wan L; Li W; Ning Y; Huang W; Li M; Xi P; Deng Y; Jiang Z; Kong G
    Plant Physiol; 2024 Feb; 194(3):1779-1793. PubMed ID: 38039157
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Basic Leucine Zipper Transcription Factor PlBZP32 Associated with the Oxidative Stress Response Is Critical for Pathogenicity of the Lychee Downy Blight Oomycete Peronophythora litchii.
    Kong G; Chen Y; Deng Y; Feng D; Jiang L; Wan L; Li M; Jiang Z; Xi P
    mSphere; 2020 Jun; 5(3):. PubMed ID: 32493721
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Preservation of Litchi Fruit with Nanosilver Composite Particles (Ag-NP) and Resistance against
    Lin X; Lin Y; Liao Z; Niu X; Wu Y; Shao D; Shen B; Shen T; Wang F; Ding H; Ye B; Li Y
    Foods; 2022 Sep; 11(19):. PubMed ID: 36230009
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A plant cell death-inducing protein from litchi interacts with Peronophythora litchii pectate lyase and enhances plant resistance.
    Li W; Li P; Deng Y; Situ J; He Z; Zhou W; Li M; Xi P; Liang X; Kong G; Jiang Z
    Nat Commun; 2024 Jan; 15(1):22. PubMed ID: 38167822
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transcriptome, degradome and physiological analysis provide new insights into the mechanism of inhibition of litchi fruit senescence by melatonin.
    Zhang Z; Liu J; Huber DJ; Qu H; Yun Z; Li T; Jiang Y
    Plant Sci; 2021 Jul; 308():110926. PubMed ID: 34034874
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Peronophythora litchii RXLR effector P. litchii avirulence homolog 202 destabilizes a host ethylene biosynthesis enzyme.
    Li P; Li W; Zhou X; Situ J; Xie L; Xi P; Yang B; Kong G; Jiang Z
    Plant Physiol; 2023 Aug; 193(1):756-774. PubMed ID: 37232407
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Litchi Fruit LcNAC1 is a Target of LcMYC2 and Regulator of Fruit Senescence Through its Interaction with LcWRKY1.
    Jiang G; Yan H; Wu F; Zhang D; Zeng W; Qu H; Chen F; Tan L; Duan X; Jiang Y
    Plant Cell Physiol; 2017 Jun; 58(6):1075-1089. PubMed ID: 28419348
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Three LcABFs are Involved in the Regulation of Chlorophyll Degradation and Anthocyanin Biosynthesis During Fruit Ripening in Litchi chinensis.
    Hu B; Lai B; Wang D; Li J; Chen L; Qin Y; Wang H; Qin Y; Hu G; Zhao J
    Plant Cell Physiol; 2019 Feb; 60(2):448-461. PubMed ID: 30407601
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Energy status of ripening and postharvest senescent fruit of litchi (Litchi chinensis Sonn.).
    Wang H; Qian Z; Ma S; Zhou Y; Patrick JW; Duan X; Jiang Y; Qu H
    BMC Plant Biol; 2013 Apr; 13():55. PubMed ID: 23547657
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of MicroRNAs and Their Target Genes Related to the Accumulation of Anthocyanins in
    Liu R; Lai B; Hu B; Qin Y; Hu G; Zhao J
    Front Plant Sci; 2016; 7():2059. PubMed ID: 28119728
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Melatonin treatment improves postharvest quality and regulates reactive oxygen species metabolism in "Feizixiao" litchi based on principal component analysis.
    Xie J; Qin Z; Pan J; Li J; Li X; Khoo HE; Dong X
    Front Plant Sci; 2022; 13():965345. PubMed ID: 36035718
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Antifungal Activity of Isoliquiritin and Its Inhibitory Effect against Peronophythora litchi Chen through a Membrane Damage Mechanism.
    Luo J; Li Z; Wang J; Weng Q; Chen S; Hu M
    Molecules; 2016 Feb; 21(2):237. PubMed ID: 26907232
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Litchi aspartic protease LcAP1 enhances plant resistance via suppressing cell death triggered by the pectate lyase PlPeL8 from Peronophythora litchii.
    Li W; Li P; Deng Y; Zhang Z; Situ J; Huang J; Li M; Xi P; Jiang Z; Kong G
    New Phytol; 2024 Jun; 242(6):2682-2701. PubMed ID: 38622771
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Two point mutations N771S and K847N in the VHA-a of Phytophthora litchii confer resistance to fluopimomide.
    Dai T; Wang Z; Yang J; Yuan K; Miao J; Liu X
    Pestic Biochem Physiol; 2024 Jun; 202():105900. PubMed ID: 38879291
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An inclusion complex of eugenol into β-cyclodextrin: Preparation, and physicochemical and antifungal characterization.
    Gong L; Li T; Chen F; Duan X; Yuan Y; Zhang D; Jiang Y
    Food Chem; 2016 Apr; 196():324-30. PubMed ID: 26593497
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.