These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 3628349)

  • 21. Controlled patterns of daytime light exposure improve circadian adjustment in simulated night work.
    Dumont M; Blais H; Roy J; Paquet J
    J Biol Rhythms; 2009 Oct; 24(5):427-37. PubMed ID: 19755587
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Circadian rhythms in airline pilots submitted to long-haul transmeridian flights.
    Ariznavarreta C; Cardinali DP; Villanúa MA; Granados B; Martín M; Chiesa JJ; Golombek DA; Tresguerres JA
    Aviat Space Environ Med; 2002 May; 73(5):445-55. PubMed ID: 12014603
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Circadian rhythm entrainment with melatonin, melatonin receptor antagonist S22153 or their combination in mice exposed to constant light.
    Li XM; Beau J; Delagrange P; Mocaër E; Lévi F
    J Pineal Res; 2004 Oct; 37(3):176-84. PubMed ID: 15357662
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A benzodiazepine hypnotic facilitates adaptation of circadian rhythms and sleep-wake homeostasis to an eight hour delay shift simulating westward jet lag.
    Buxton OM; Copinschi G; Van Onderbergen A; Karrison TG; Van Cauter E
    Sleep; 2000 Nov; 23(7):915-27. PubMed ID: 11083601
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Desynchronization and resynchronization after west-east and east-west transmeridian flight].
    Sensi S; Capani F; Guagnano T; Iezzi M; Fuciarelli R
    Boll Soc Ital Biol Sper; 1982 Feb; 58(3-4):109-14. PubMed ID: 7066105
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Medium-intensity light produces circadian rhythm adaptation to simulated night-shift work.
    Martin SK; Eastman CI
    Sleep; 1998 Mar; 21(2):154-65. PubMed ID: 9542799
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Using nine 2-h delays to achieve a 6-h advance disrupts sleep, alertness, and circadian rhythm.
    Monk TH; Buysse DJ; Billy BD; DeGrazia JM
    Aviat Space Environ Med; 2004 Dec; 75(12):1049-57. PubMed ID: 15619859
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sleep adaptation after phase shifts of the sleep--wakefulness rhythm in man.
    Hume KI
    Sleep; 1980; 2(4):417-35. PubMed ID: 7403742
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Circadian disruption of body core temperature and rest-activity rhythms after general (propofol) anesthesia in rats.
    Dispersyn G; Pain L; Touitou Y
    Anesthesiology; 2009 Jun; 110(6):1305-15. PubMed ID: 19417612
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterizing the amplitude dynamics of the human core-temperature circadian rhythm using a stochastic-dynamic model.
    Indic P; Brown EN
    J Theor Biol; 2006 Apr; 239(4):499-506. PubMed ID: 16223510
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gradual adjustment of circaseptan-circadian blood pressure and heart rate rhythms after a trans-9-meridian flight.
    Saito YZ; Cornélissen G; Sonkowsky R; Saito YK; Saito YI; Saito J; Wu J; Hillman D; Wang Z; Hata Y
    Chronobiologia; 1992; 19(1-2):67-74. PubMed ID: 1628523
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Using outdoor exercise to decrease jet lag in airline crewmembers.
    Shiota M; Sudou M; Ohshima M
    Aviat Space Environ Med; 1996 Dec; 67(12):1155-60. PubMed ID: 8968481
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Resynchronization of blood pressure circadian rhythm after westward trans-7-meridian flight with and without melatonin treatment.
    Barattini P; Dolci C; Montaruli A; Roveda E; Carandente F
    Aviat Space Environ Med; 2001 Mar; 72(3):221-4. PubMed ID: 11277289
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Using daily 30-min phase advances to achieve a 6-hour advance: circadian rhythm, sleep, and alertness.
    Monk TH; Buysse DJ; Billy BD
    Aviat Space Environ Med; 2006 Jul; 77(7):677-86. PubMed ID: 16856351
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Individual differences in phase shifts of the human circadian system and performance deficit.
    Hauty GT
    Life Sci Space Res; 1967; 5():135-47. PubMed ID: 11973842
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sleep, sleepiness, and circadian rhythmicity in aircrews operating on transatlantic routes.
    Wegmann HM; Gundel A; Naumann M; Samel A; Schwartz E; Vejvoda M
    Aviat Space Environ Med; 1986 Dec; 57(12 Pt 2):B53-64. PubMed ID: 3800830
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantitation of desynchronosis.
    Winget CM; Bond GH; Rosenblatt LS; Hetherington NW; Higgins EA; DeRoshia C
    Chronobiologia; 1975; 2(3):197-204. PubMed ID: 815078
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A likelihood ratio method for studying the re-entrainment of circadian rhythms.
    Monk TH
    Chronobiologia; 1977; 4(4):325-32. PubMed ID: 614121
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Circadian urinary 6-sulphatoxymelatonin, cortisol excretion and locomotor activity in airline pilots during transmeridian flights.
    Tresguerres JA; Ariznavarreta C; Granados B; Martín M; Villanúa MA; Golombek DA; Cardinali DP
    J Pineal Res; 2001 Aug; 31(1):16-22. PubMed ID: 11485000
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effect of real and simulated time-zone shifts upon the circadian rhythms of body temperature, plasma 11-hydroxycorticosteroids, and renal excretion in human subjects.
    Elliott AL; Mills JN; Minors DS; Waterhouse JM
    J Physiol; 1972 Feb; 221(1):227-57. PubMed ID: 5016984
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.