BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 36283775)

  • 1. Application of an electrokinetic backflow for enhancing pressure-driven charge based separations in sub-micrometer deep channels.
    Xia L; Deb R; Yanagisawa N; Dutta D
    Anal Chim Acta; 2022 Nov; 1233():340476. PubMed ID: 36283775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microchip-Based Electrophoretic Separations with a Pressure-Driven Backflow.
    Xia L; Dutta D
    Methods Mol Biol; 2019; 1906():239-249. PubMed ID: 30488397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A microchip device for enhancing capillary zone electrophoresis using pressure-driven backflow.
    Xia L; Dutta D
    Anal Chem; 2012 Nov; 84(22):10058-63. PubMed ID: 23092536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic flow counterbalanced capillary electrophoresis.
    Xia L; Dutta D
    Analyst; 2013 Apr; 138(7):2126-33. PubMed ID: 23420375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An analytic description of electrodynamic dispersion in free-flow zone electrophoresis.
    Dutta D
    J Chromatogr A; 2015 Jul; 1404():124-30. PubMed ID: 26044384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An integrated plastic microchip for enhancing electrophoretic separation using tunable pressure-driven backflows.
    Liu Y; Xia L; Xiao X; Li G
    Electrophoresis; 2022 Apr; 43(7-8):892-900. PubMed ID: 35020208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing separation in short-capillary electrophoresis via pressure-driven backflow.
    Tian M; Wang Y; Mohamed AC; Guo L; Yang L
    Electrophoresis; 2015 Jul; 36(14):1549-54. PubMed ID: 25826429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High efficiency hydrodynamic chromatography in micro- and sub-micrometer deep channels using an on-chip pressure-generation unit.
    Xia L; Dutta D
    Anal Chim Acta; 2017 Jan; 950():192-198. PubMed ID: 27916125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On-Chip Pressure Generation for Driving Liquid Phase Separations in Nanochannels.
    Xia L; Choi C; Kothekar SC; Dutta D
    Anal Chem; 2016 Jan; 88(1):781-8. PubMed ID: 26636608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sodium silicate based sol-gel structures for generating pressure-driven flow in microfluidic channels.
    Toh GM; Corcoran RC; Dutta D
    J Chromatogr A; 2010 Jul; 1217(30):5004-11. PubMed ID: 20554290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduction in sample injection bias using pressure gradients generated on chip.
    Liu Y; Xia L; Dutta D
    Electrophoresis; 2021 Apr; 42(7-8):983-990. PubMed ID: 33569844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simple mechanism for reliable particle sorting in a microdevice with combined electroosmotic and pressure-driven flow.
    Johann R; Renaud P
    Electrophoresis; 2004 Nov; 25(21-22):3720-9. PubMed ID: 15565695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On-chip pressure generation using a gel membrane fabricated outside of the microfluidic network.
    Xia L; Yanagisawa N; Deb R; Dutta D
    Electrophoresis; 2019 Mar; 40(5):748-755. PubMed ID: 30370929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A microfluidic device for performing pressure-driven separations.
    Dutta D; Ramsey JM
    Lab Chip; 2011 Sep; 11(18):3081-8. PubMed ID: 21789335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Joule heating induced stream broadening in free-flow zone electrophoresis.
    Dutta D
    Electrophoresis; 2018 Mar; 39(5-6):760-769. PubMed ID: 29115696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of varying electroosmotic flow on the effective diffusion in electric field gradient separations.
    Maynes D; Tenny J; Webbd BW; Lee ML
    Electrophoresis; 2008 Feb; 29(3):549-60. PubMed ID: 18200632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measuring microchannel electroosmotic mobility and zeta potential by the current monitoring method.
    Shao C; Devoe DL
    Methods Mol Biol; 2013; 949():55-63. PubMed ID: 23329435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pressure generation at the junction of two microchannels with different depths.
    Yanagisawa N; Dutta D
    Electrophoresis; 2010 Jun; 31(12):2080-8. PubMed ID: 20503204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigating peak dispersion in free-flow counterflow gradient focusing due to electroosmotic flow.
    Courtney M; Glawdel T; Ren CL
    Electrophoresis; 2023 Apr; 44(7-8):646-655. PubMed ID: 36502493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined electroosmotically and pressure driven flow in soft nanofluidics.
    Matin MH; Ohshima H
    J Colloid Interface Sci; 2015 Dec; 460():361-9. PubMed ID: 26385594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.