These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
260 related articles for article (PubMed ID: 36283984)
1. Hydrophobicity Determines the Bacterial Killing Rate of α-Helical Antimicrobial Peptides and Influences the Bacterial Resistance Development. Zhang M; Ouyang J; Fu L; Xu C; Ge Y; Sun S; Li X; Lai S; Ke H; Yuan B; Yang K; Yu H; Gao L; Wang Y J Med Chem; 2022 Nov; 65(21):14701-14720. PubMed ID: 36283984 [TBL] [Abstract][Full Text] [Related]
2. Bacterial resistance to antimicrobial peptides. Abdi M; Mirkalantari S; Amirmozafari N J Pept Sci; 2019 Nov; 25(11):e3210. PubMed ID: 31637796 [TBL] [Abstract][Full Text] [Related]
3. Enhancing Antimicrobial Peptide Activity through Modifications of Charge, Hydrophobicity, and Structure. Gagat P; Ostrówka M; Duda-Madej A; Mackiewicz P Int J Mol Sci; 2024 Oct; 25(19):. PubMed ID: 39409150 [TBL] [Abstract][Full Text] [Related]
5. Designing α-helical peptides with enhanced synergism and selectivity against Mycobacterium smegmatis: Discerning the role of hydrophobicity and helicity. Khara JS; Lim FK; Wang Y; Ke XY; Voo ZX; Yang YY; Lakshminarayanan R; Ee PLR Acta Biomater; 2015 Dec; 28():99-108. PubMed ID: 26380930 [TBL] [Abstract][Full Text] [Related]
6. The amphipathic design in helical antimicrobial peptides. Bui Thi Phuong H; Doan Ngan H; Le Huy B; Vu Dinh H; Luong Xuan H ChemMedChem; 2024 Apr; 19(7):e202300480. PubMed ID: 38408263 [TBL] [Abstract][Full Text] [Related]
7. Design and synthesis of cationic antimicrobial peptides with improved activity and selectivity against Vibrio spp. Chou HT; Kuo TY; Chiang JC; Pei MJ; Yang WT; Yu HC; Lin SB; Chen WJ Int J Antimicrob Agents; 2008 Aug; 32(2):130-8. PubMed ID: 18586467 [TBL] [Abstract][Full Text] [Related]
8. Structure-activity relationship of an antimicrobial peptide, Phylloseptin-PHa: balance of hydrophobicity and charge determines the selectivity of bioactivities. Liu Y; Du Q; Ma C; Xi X; Wang L; Zhou M; Burrows JF; Chen T; Wang H Drug Des Devel Ther; 2019; 13():447-458. PubMed ID: 30774309 [TBL] [Abstract][Full Text] [Related]
9. NMR Structures and Interactions of Antimicrobial Peptides with Lipopolysaccharide: Connecting Structures to Functions. Bhattacharjya S Curr Top Med Chem; 2016; 16(1):4-15. PubMed ID: 26139110 [TBL] [Abstract][Full Text] [Related]
10. Alpha-helical cationic antimicrobial peptides: relationships of structure and function. Huang Y; Huang J; Chen Y Protein Cell; 2010 Feb; 1(2):143-52. PubMed ID: 21203984 [TBL] [Abstract][Full Text] [Related]
11. Cooperativity in Bacterial Membrane Association Controls the Synergistic Activities of Antimicrobial Peptides. Nguyen TN; Teimouri H; Medvedeva A; Kolomeisky AB J Phys Chem B; 2022 Sep; 126(38):7365-7372. PubMed ID: 36108158 [TBL] [Abstract][Full Text] [Related]
12. Design of short membrane selective antimicrobial peptides containing tryptophan and arginine residues for improved activity, salt-resistance, and biocompatibility. Saravanan R; Li X; Lim K; Mohanram H; Peng L; Mishra B; Basu A; Lee JM; Bhattacharjya S; Leong SS Biotechnol Bioeng; 2014 Jan; 111(1):37-49. PubMed ID: 23860860 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of topologically distinct constrained antimicrobial peptides with broad-spectrum antimicrobial activity. Yuan F; Tian Y; Qin W; Li J; Yang D; Zhao B; Yin F; Li Z Org Biomol Chem; 2018 Aug; 16(32):5764-5770. PubMed ID: 30004546 [TBL] [Abstract][Full Text] [Related]
14. Design and membrane-disruption mechanism of charge-enriched AMPs exhibiting cell selectivity, high-salt resistance, and anti-biofilm properties. Han HM; Gopal R; Park Y Amino Acids; 2016 Feb; 48(2):505-22. PubMed ID: 26450121 [TBL] [Abstract][Full Text] [Related]
15. Salt-resistant short antimicrobial peptides. Mohanram H; Bhattacharjya S Biopolymers; 2016 May; 106(3):345-56. PubMed ID: 26849911 [TBL] [Abstract][Full Text] [Related]
16. Membrane mechanism of temporin-1CEc, an antimicrobial peptide isolated from the skin secretions of Rana chensinensis, and its systemic analogs. Ji F; Zhao Y; Jiang F; Shang D Bioorg Chem; 2022 Feb; 119():105544. PubMed ID: 34953322 [TBL] [Abstract][Full Text] [Related]
17. Improving the Therapeutic Index of Smp24, a Venom-Derived Antimicrobial Peptide: Increased Activity against Gram-Negative Bacteria. Rawson KM; Lacey MM; Strong PN; Miller K Int J Mol Sci; 2022 Jul; 23(14):. PubMed ID: 35887325 [TBL] [Abstract][Full Text] [Related]
18. Effects of Hydrophobic Amino Acid Substitutions on Antimicrobial Peptide Behavior. Saint Jean KD; Henderson KD; Chrom CL; Abiuso LE; Renn LM; Caputo GA Probiotics Antimicrob Proteins; 2018 Sep; 10(3):408-419. PubMed ID: 29103131 [TBL] [Abstract][Full Text] [Related]
19. Deciphering Structure-Function Relationship Unveils Salt-Resistant Mode of Action of a Potent MRSA-Inhibiting Antimicrobial Peptide, RR14. Kao CC; Lin TL; Lin CJ; Tseng TS J Bacteriol; 2022 Dec; 204(12):e0031222. PubMed ID: 36377870 [TBL] [Abstract][Full Text] [Related]
20. Effect of Secondary Structure and Side Chain Length of Hydrophobic Amino Acid Residues on the Antimicrobial Activity and Toxicity of 14-Residue-Long de novo AMPs. Pandit G; Chowdhury N; Abdul Mohid S; Bidkar AP; Bhunia A; Chatterjee S ChemMedChem; 2021 Jan; 16(2):355-367. PubMed ID: 33026188 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]