These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 36284125)

  • 21. A Machine Learning Approach for Drug-target Interaction Prediction using Wrapper Feature Selection and Class Balancing.
    Redkar S; Mondal S; Joseph A; Hareesha KS
    Mol Inform; 2020 May; 39(5):e1900062. PubMed ID: 32003548
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A machine learning-based method to improve docking scoring functions and its application to drug repurposing.
    Kinnings SL; Liu N; Tonge PJ; Jackson RM; Xie L; Bourne PE
    J Chem Inf Model; 2011 Feb; 51(2):408-19. PubMed ID: 21291174
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of new potential candidates to inhibit EGF via machine learning algorithm.
    Torabi M; Yasami-Khiabani S; Sardari S; Golkar M; Pérez-Sánchez H; Ghasemi F
    Eur J Pharmacol; 2024 Jan; 963():176176. PubMed ID: 38000720
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular descriptor analysis of approved drugs using unsupervised learning for drug repurposing.
    Madugula SS; John L; Nagamani S; Gaur AS; Poroikov VV; Sastry GN
    Comput Biol Med; 2021 Nov; 138():104856. PubMed ID: 34555571
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Drug repositioning based on multi-view learning with matrix completion.
    Yan Y; Yang M; Zhao H; Duan G; Peng X; Wang J
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35289352
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Bayesian machine learning approach for drug target identification using diverse data types.
    Madhukar NS; Khade PK; Huang L; Gayvert K; Galletti G; Stogniew M; Allen JE; Giannakakou P; Elemento O
    Nat Commun; 2019 Nov; 10(1):5221. PubMed ID: 31745082
    [TBL] [Abstract][Full Text] [Related]  

  • 27. PIMD: An Integrative Approach for Drug Repositioning Using Multiple Characterization Fusion.
    He S; Wen Y; Yang X; Liu Z; Song X; Huang X; Bo X
    Genomics Proteomics Bioinformatics; 2020 Oct; 18(5):565-581. PubMed ID: 33075523
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Articulating target-mining techniques to disinter Alzheimer's specific targets for drug repurposing.
    G N S HS; Marise VLP; Rajalekshmi SG; Burri RR; Krishna Murthy TP
    Comput Methods Programs Biomed; 2022 Jul; 222():106931. PubMed ID: 35724476
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Assessing protein kinase target similarity: Comparing sequence, structure, and cheminformatics approaches.
    Gani OA; Thakkar B; Narayanan D; Alam KA; Kyomuhendo P; Rothweiler U; Tello-Franco V; Engh RA
    Biochim Biophys Acta; 2015 Oct; 1854(10 Pt B):1605-16. PubMed ID: 26001898
    [TBL] [Abstract][Full Text] [Related]  

  • 30. K-Map: connecting kinases with therapeutics for drug repurposing and development.
    Kim J; Yoo M; Kang J; Tan AC
    Hum Genomics; 2013 Sep; 7(1):20. PubMed ID: 24060470
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Drug Discovery Maps, a Machine Learning Model That Visualizes and Predicts Kinome-Inhibitor Interaction Landscapes.
    Janssen APA; Grimm SH; Wijdeven RHM; Lenselink EB; Neefjes J; van Boeckel CAA; van Westen GJP; van der Stelt M
    J Chem Inf Model; 2019 Mar; 59(3):1221-1229. PubMed ID: 30372617
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Integrative cancer pharmacogenomics to establish drug mechanism of action: drug repurposing.
    El-Hachem N; Ba-Alawi W; Smith I; Mer AS; Haibe-Kains B
    Pharmacogenomics; 2017 Nov; 18(16):1469-1472. PubMed ID: 29057710
    [No Abstract]   [Full Text] [Related]  

  • 33. Web-based drug repurposing tools: a survey.
    Sam E; Athri P
    Brief Bioinform; 2019 Jan; 20(1):299-316. PubMed ID: 29028878
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rational discovery of dual-indication multi-target PDE/Kinase inhibitor for precision anti-cancer therapy using structural systems pharmacology.
    Lim H; He D; Qiu Y; Krawczuk P; Sun X; Xie L
    PLoS Comput Biol; 2019 Jun; 15(6):e1006619. PubMed ID: 31206508
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Machine Learning Applications in Drug Repurposing.
    Yang F; Zhang Q; Ji X; Zhang Y; Li W; Peng S; Xue F
    Interdiscip Sci; 2022 Mar; 14(1):15-21. PubMed ID: 35066811
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Drug repositioning of herbal compounds via a machine-learning approach.
    Kim E; Choi AS; Nam H
    BMC Bioinformatics; 2019 May; 20(Suppl 10):247. PubMed ID: 31138103
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prediction of drug-target interactions for drug repositioning only based on genomic expression similarity.
    Wang K; Sun J; Zhou S; Wan C; Qin S; Li C; He L; Yang L
    PLoS Comput Biol; 2013; 9(11):e1003315. PubMed ID: 24244130
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Drug Repositioning for Schizophrenia and Depression/Anxiety Disorders: A Machine Learning Approach Leveraging Expression Data.
    Zhao K; So HC
    IEEE J Biomed Health Inform; 2019 May; 23(3):1304-1315. PubMed ID: 30010603
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reconciling multiple connectivity scores for drug repurposing.
    Samart K; Tuyishime P; Krishnan A; Ravi J
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34013329
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tripartite Network-Based Repurposing Method Using Deep Learning to Compute Similarities for Drug-Target Prediction.
    Zong N; Wong RSN; Ngo V
    Methods Mol Biol; 2019; 1903():317-328. PubMed ID: 30547451
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.