These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 36284125)

  • 41. Protein domain-based prediction of drug/compound-target interactions and experimental validation on LIM kinases.
    Doğan T; Akhan Güzelcan E; Baumann M; Koyas A; Atas H; Baxendale IR; Martin M; Cetin-Atalay R
    PLoS Comput Biol; 2021 Nov; 17(11):e1009171. PubMed ID: 34843456
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Repurposing existing drugs for new AMPK activators as a strategy to extend lifespan: a computer-aided drug discovery study.
    Mofidifar S; Sohraby F; Bagheri M; Aryapour H
    Biogerontology; 2018 Apr; 19(2):133-143. PubMed ID: 29335817
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Recent trends in artificial intelligence-driven identification and development of anti-neurodegenerative therapeutic agents.
    Kashyap K; Siddiqi MI
    Mol Divers; 2021 Aug; 25(3):1517-1539. PubMed ID: 34282519
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Systematic integration of biomedical knowledge prioritizes drugs for repurposing.
    Himmelstein DS; Lizee A; Hessler C; Brueggeman L; Chen SL; Hadley D; Green A; Khankhanian P; Baranzini SE
    Elife; 2017 Sep; 6():. PubMed ID: 28936969
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Use of Computational Functional Genomics in Drug Discovery and Repurposing for Analgesic Indications.
    Lötsch J; Kringel D
    Clin Pharmacol Ther; 2018 Jun; 103(6):975-978. PubMed ID: 29350398
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Prediction of kinase inhibitors binding modes with machine learning and reduced descriptor sets.
    Abdelbaky I; Tayara H; Chong KT
    Sci Rep; 2021 Jan; 11(1):706. PubMed ID: 33436888
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Drug repurposing: a promising tool to accelerate the drug discovery process.
    Parvathaneni V; Kulkarni NS; Muth A; Gupta V
    Drug Discov Today; 2019 Oct; 24(10):2076-2085. PubMed ID: 31238113
    [TBL] [Abstract][Full Text] [Related]  

  • 48. eRepo-ORP: Exploring the Opportunity Space to Combat Orphan Diseases with Existing Drugs.
    Brylinski M; Naderi M; Govindaraj RG; Lemoine J
    J Mol Biol; 2018 Jul; 430(15):2266-2273. PubMed ID: 29237557
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Network mirroring for drug repositioning.
    Park S; Lee DG; Shin H
    BMC Med Inform Decis Mak; 2017 May; 17(Suppl 1):55. PubMed ID: 28539121
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Recent Advances in In Silico Target Fishing.
    Galati S; Di Stefano M; Martinelli E; Poli G; Tuccinardi T
    Molecules; 2021 Aug; 26(17):. PubMed ID: 34500568
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A new computational drug repurposing method using established disease-drug pair knowledge.
    Saberian N; Peyvandipour A; Donato M; Ansari S; Draghici S
    Bioinformatics; 2019 Oct; 35(19):3672-3678. PubMed ID: 30840053
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Bionoi: A Voronoi Diagram-Based Representation of Ligand-Binding Sites in Proteins for Machine Learning Applications.
    Feinstein J; Shi W; Ramanujam J; Brylinski M
    Methods Mol Biol; 2021; 2266():299-312. PubMed ID: 33759134
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Assisting Multitargeted Ligand Affinity Prediction of Receptor Tyrosine Kinases Associated Nonsmall Cell Lung Cancer Treatment with Multitasking Principal Neighborhood Aggregation.
    Nakarin F; Boonpalit K; Kinchagawat J; Wachiraphan P; Rungrotmongkol T; Nutanong S
    Molecules; 2022 Feb; 27(4):. PubMed ID: 35209011
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A Drug-Target Network-Based Supervised Machine Learning Repurposing Method Allowing the Use of Multiple Heterogeneous Information Sources.
    Nascimento ACA; Prudêncio RBC; Costa IG
    Methods Mol Biol; 2019; 1903():281-289. PubMed ID: 30547449
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Analyzing Kinase Similarity in Small Molecule and Protein Structural Space to Explore the Limits of Multi-Target Screening.
    Schmidt D; Scharf MM; Sydow D; Aßmann E; Martí-Solano M; Keul M; Volkamer A; Kolb P
    Molecules; 2021 Jan; 26(3):. PubMed ID: 33530327
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Revealing new therapeutic opportunities through drug target prediction: a class imbalance-tolerant machine learning approach.
    Liang S; Yu H
    Bioinformatics; 2020 Aug; 36(16):4490-4497. PubMed ID: 32399556
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Machine learning accelerates MD-based binding pose prediction between ligands and proteins.
    Terayama K; Iwata H; Araki M; Okuno Y; Tsuda K
    Bioinformatics; 2018 Mar; 34(5):770-778. PubMed ID: 29040432
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Machine learning approaches and their applications in drug discovery and design.
    Priya S; Tripathi G; Singh DB; Jain P; Kumar A
    Chem Biol Drug Des; 2022 Jul; 100(1):136-153. PubMed ID: 35426249
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Data-driven drug discovery for drug repurposing].
    Saito R; Yano N; Kojima S; Miyoshi F
    Nihon Yakurigaku Zasshi; 2023; 158(1):10-14. PubMed ID: 36596476
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Computational Discovery of Putative Leads for Drug Repositioning through Drug-Target Interaction Prediction.
    Coelho ED; Arrais JP; Oliveira JL
    PLoS Comput Biol; 2016 Nov; 12(11):e1005219. PubMed ID: 27893735
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.