These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 36284276)
1. Combining denoising of RNA-seq data and flux balance analysis for cluster analysis of single cells. Galuzzi BG; Vanoni M; Damiani C BMC Bioinformatics; 2022 Oct; 23(Suppl 6):445. PubMed ID: 36284276 [TBL] [Abstract][Full Text] [Related]
2. scBGEDA: deep single-cell clustering analysis via a dual denoising autoencoder with bipartite graph ensemble clustering. Wang Y; Yu Z; Li S; Bian C; Liang Y; Wong KC; Li X Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36734596 [TBL] [Abstract][Full Text] [Related]
3. Denoising adaptive deep clustering with self-attention mechanism on single-cell sequencing data. Su Y; Lin R; Wang J; Tan D; Zheng C Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36715275 [TBL] [Abstract][Full Text] [Related]
4. A graph neural network model to estimate cell-wise metabolic flux using single-cell RNA-seq data. Alghamdi N; Chang W; Dang P; Lu X; Wan C; Gampala S; Huang Z; Wang J; Ma Q; Zang Y; Fishel M; Cao S; Zhang C Genome Res; 2021 Oct; 31(10):1867-1884. PubMed ID: 34301623 [TBL] [Abstract][Full Text] [Related]
5. scCDG: A Method Based on DAE and GCN for scRNA-Seq Data Analysis. Wang HY; Zhao JP; Su YS; Zheng CH IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(6):3685-3694. PubMed ID: 34752401 [TBL] [Abstract][Full Text] [Related]
6. Single-cell RNA sequencing data analysis utilizing multi-type graph neural networks. Xu L; Li Z; Ren J; Liu S; Xu Y Comput Biol Med; 2024 Sep; 179():108921. PubMed ID: 39059210 [TBL] [Abstract][Full Text] [Related]
7. scDMAE: A Generative Denoising Model Adopted Mask Strategy for scRNA-Seq Data Recovery. Liu W; Pan Y; Teng Z; Xu J IEEE J Biomed Health Inform; 2024 Jun; 28(6):3772-3780. PubMed ID: 38568766 [TBL] [Abstract][Full Text] [Related]
8. Machine learning and statistical methods for clustering single-cell RNA-sequencing data. Petegrosso R; Li Z; Kuang R Brief Bioinform; 2020 Jul; 21(4):1209-1223. PubMed ID: 31243426 [TBL] [Abstract][Full Text] [Related]
9. Dimensionality Reduction of Single-Cell RNA Sequencing Data by Combining Entropy and Denoising AutoEncoder. Zhu X; Li J; Lin Y; Zhao L; Wang J; Peng X J Comput Biol; 2022 Oct; 29(10):1074-1084. PubMed ID: 35834604 [No Abstract] [Full Text] [Related]
10. scDCCA: deep contrastive clustering for single-cell RNA-seq data based on auto-encoder network. Wang J; Xia J; Wang H; Su Y; Zheng CH Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36631401 [TBL] [Abstract][Full Text] [Related]
11. Single-cell RNA-seq denoising using a deep count autoencoder. Eraslan G; Simon LM; Mircea M; Mueller NS; Theis FJ Nat Commun; 2019 Jan; 10(1):390. PubMed ID: 30674886 [TBL] [Abstract][Full Text] [Related]
12. A joint deep learning model enables simultaneous batch effect correction, denoising, and clustering in single-cell transcriptomics. Lakkis J; Wang D; Zhang Y; Hu G; Wang K; Pan H; Ungar L; Reilly MP; Li X; Li M Genome Res; 2021 Oct; 31(10):1753-1766. PubMed ID: 34035047 [TBL] [Abstract][Full Text] [Related]
13. scHFC: a hybrid fuzzy clustering method for single-cell RNA-seq data optimized by natural computation. Wang J; Xia J; Tan D; Lin R; Su Y; Zheng CH Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35136924 [TBL] [Abstract][Full Text] [Related]
14. Sparsity-Penalized Stacked Denoising Autoencoders for Imputing Single-Cell RNA-Seq Data. Chi W; Deng M Genes (Basel); 2020 May; 11(5):. PubMed ID: 32403260 [TBL] [Abstract][Full Text] [Related]
15. Data Analysis in Single-Cell Transcriptome Sequencing. Gao S Methods Mol Biol; 2018; 1754():311-326. PubMed ID: 29536451 [TBL] [Abstract][Full Text] [Related]
16. An accessible, interactive GenePattern Notebook for analysis and exploration of single-cell transcriptomic data. Mah CK; Wenzel AT; Juarez EF; Tabor T; Reich MM; Mesirov JP F1000Res; 2018; 7():1306. PubMed ID: 31316748 [TBL] [Abstract][Full Text] [Related]
17. Comparison of scRNA-seq data analysis method combinations. Xu L; Xue T; Ding W; Shen L Brief Funct Genomics; 2022 Nov; 21(6):433-440. PubMed ID: 36124658 [TBL] [Abstract][Full Text] [Related]
19. geneBasis: an iterative approach for unsupervised selection of targeted gene panels from scRNA-seq. Missarova A; Jain J; Butler A; Ghazanfar S; Stuart T; Brusko M; Wasserfall C; Nick H; Brusko T; Atkinson M; Satija R; Marioni JC Genome Biol; 2021 Dec; 22(1):333. PubMed ID: 34872616 [TBL] [Abstract][Full Text] [Related]
20. Characterizing cancer metabolism from bulk and single-cell RNA-seq data using METAFlux. Huang Y; Mohanty V; Dede M; Tsai K; Daher M; Li L; Rezvani K; Chen K Nat Commun; 2023 Aug; 14(1):4883. PubMed ID: 37573313 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]