These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 36284496)
1. Keeping Superprotonic Conductivity over a Wide Temperature Region via Sulfate Hopping Sites-Decorated Zirconium-Oxo Clusters. Xie WL; Li XM; Lin JM; Dong LZ; Chen Y; Li N; Shi JW; Liu JJ; Liu J; Li SL; Lan YQ Small; 2022 Dec; 18(48):e2205444. PubMed ID: 36284496 [TBL] [Abstract][Full Text] [Related]
2. Room-Temperature Superprotonic Conductivity beyond 10 Pal SC; Mukherjee D; Oruganti Y; Lee BG; Lim DW; Pramanik B; Manna AK; Das MC J Am Chem Soc; 2024 May; 146(21):14546-14557. PubMed ID: 38748181 [TBL] [Abstract][Full Text] [Related]
3. Anhydrous Superprotonic Conductivity in the Zirconium Acid Triphosphate ZrH Fop S; Vivani R; Masci S; Casciola M; Donnadio A Angew Chem Int Ed Engl; 2023 Apr; 62(18):e202218421. PubMed ID: 36856155 [TBL] [Abstract][Full Text] [Related]
4. Proton conductors with wide operating temperature domains achieved by applying a dual-modification strategy to MIL-101. Zhang W; Lu Y; Zhang S; Dang T; Tian H; Zhang Z; Liu S Dalton Trans; 2021 Dec; 50(48):18053-18060. PubMed ID: 34842879 [TBL] [Abstract][Full Text] [Related]
5. Efficiently Boosting Moisture Retention Capacity of Porous Superprotonic Conducting MOF-802 at Ambient Humidity via Forming a Hydrogel Composite Strategy. Zhang J; He X; Kong YR; Luo HB; Liu M; Liu Y; Ren XM ACS Appl Mater Interfaces; 2021 Aug; 13(31):37231-37238. PubMed ID: 34324287 [TBL] [Abstract][Full Text] [Related]
6. Syntheses and High Proton Conductivities of Two 3D Zr(IV)/Hf(IV)-MOFs from Furandicarboxylic Acid. Zhuang Q; Chen S; Xu K; Kang L; Li Z; Li G Inorg Chem; 2023 Jul; 62(29):11570-11580. PubMed ID: 37434493 [TBL] [Abstract][Full Text] [Related]
7. Metal-Organic Frameworks and Other Crystalline Materials for Ultrahigh Superprotonic Conductivities of 10 Chand S; Elahi SM; Pal A; Das MC Chemistry; 2019 May; 25(25):6259-6269. PubMed ID: 30677177 [TBL] [Abstract][Full Text] [Related]
8. Superprotonic Conductivity of a Functionalized Metal-Organic Framework at Ambient Conditions. Li XM; Wang Y; Mu Y; Liu J; Zeng L; Lan YQ ACS Appl Mater Interfaces; 2022 Feb; 14(7):9264-9271. PubMed ID: 35138786 [TBL] [Abstract][Full Text] [Related]
9. Ultrahigh Proton Conduction via Extended Hydrogen-Bonding Network in a Preyssler-Type Polyoxometalate-Based Framework Functionalized with a Lanthanide Ion. Iwano T; Shitamatsu K; Ogiwara N; Okuno M; Kikukawa Y; Ikemoto S; Shirai S; Muratsugu S; Waddell PG; Errington RJ; Sadakane M; Uchida S ACS Appl Mater Interfaces; 2021 Apr; 13(16):19138-19147. PubMed ID: 33870694 [TBL] [Abstract][Full Text] [Related]
10. Superprotonic Conductivity of UiO-66 with Missing-Linker Defects in Aqua-Ammonia Vapor. Liu QQ; Liu SS; Liu XF; Xu XJ; Dong XY; Zhang HJ; Zang SQ Inorg Chem; 2022 Feb; 61(8):3406-3411. PubMed ID: 35170960 [TBL] [Abstract][Full Text] [Related]
11. Remarkable water-mediated proton conductivity of two porous zirconium(IV)/hafnium(IV) metal-organic frameworks bearing porphyrinlcarboxylate ligands. Zhuang Q; Kang LL; Zhang BY; Li ZF; Li G J Colloid Interface Sci; 2024 Mar; 657():482-490. PubMed ID: 38070334 [TBL] [Abstract][Full Text] [Related]
12. Lewis Acid Guests in a {P Yang P; Alsufyani M; Emwas AH; Chen C; Khashab NM Angew Chem Int Ed Engl; 2018 Oct; 57(40):13046-13051. PubMed ID: 29974577 [TBL] [Abstract][Full Text] [Related]
13. Ion conductivity and transport by porous coordination polymers and metal-organic frameworks. Horike S; Umeyama D; Kitagawa S Acc Chem Res; 2013 Nov; 46(11):2376-84. PubMed ID: 23730917 [TBL] [Abstract][Full Text] [Related]
14. Superprotonic Conductivity of MOFs Confining Zwitterionic Sulfamic Acid as Proton Source and Conducting Medium. Sharma A; Lim J; Lee S; Han S; Seong J; Bin Baek S; Soo Lah M Angew Chem Int Ed Engl; 2023 Jul; 62(29):e202302376. PubMed ID: 37160648 [TBL] [Abstract][Full Text] [Related]
15. Abundant defects of zirconium-organic xerogels: High anhydrous proton conductivities over a wide temperature range and formic acid impedance sensing. Tang J; Zhang F; Liang X; Dai G; Qu F J Colloid Interface Sci; 2022 Feb; 607(Pt 1):181-191. PubMed ID: 34500417 [TBL] [Abstract][Full Text] [Related]
16. Comparative Analysis of Proton Conductivity in Two Zn-Based MOFs Featuring Sulfate and Sulfonate Functional Groups. Guo YY; Wang RD; Wei WM; Fang F; Wang L; Zhang SS; Zhang J; Du L; Zhao QH Inorg Chem; 2024 Feb; 63(8):3870-3881. PubMed ID: 38356223 [TBL] [Abstract][Full Text] [Related]
17. Tailored Porous Ferrocene-Based Metal-Organic Frameworks as High-Performance Proton Conductors. Song YJ; Ren SY; Zuo S; Shi ZQ; Li Z; Li G Inorg Chem; 2024 May; 63(18):8194-8205. PubMed ID: 38639416 [TBL] [Abstract][Full Text] [Related]
18. Superprotonic conduction through one-dimensional ordered alkali metal ion chains in a lanthanide-organic framework. Wang X; Wang Y; Silver MA; Gui D; Bai Z; Wang Y; Liu W; Chen L; Diwu J; Chai Z; Wang S Chem Commun (Camb); 2018 Apr; 54(35):4429-4432. PubMed ID: 29651483 [TBL] [Abstract][Full Text] [Related]
19. The Role of a Three Dimensionally Ordered Defect Sublattice on the Acidity of a Sulfonated Metal-Organic Framework. Taylor JM; Komatsu T; Dekura S; Otsubo K; Takata M; Kitagawa H J Am Chem Soc; 2015 Sep; 137(35):11498-506. PubMed ID: 26302312 [TBL] [Abstract][Full Text] [Related]
20. Ultra-fast Proton Conduction and Photocatalytic Water Splitting in a Pillared Metal-Organic Framework. Chen J; An B; Chen Y; Han X; Mei Q; He M; Cheng Y; Vitorica-Yrezabal IJ; Natrajan LS; Lee D; Ramirez-Cuesta AJ; Yang S; Schröder M J Am Chem Soc; 2023 Sep; 145(35):19225-19231. PubMed ID: 37606549 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]