BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 3628489)

  • 1. Effects of wheelchair design on metabolic and heart rate responses during propulsion by persons with paraplegia.
    Hilbers PA; White TP
    Phys Ther; 1987 Sep; 67(9):1355-8. PubMed ID: 3628489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy cost of propulsion in standard and ultralight wheelchairs in people with spinal cord injuries.
    Beekman CE; Miller-Porter L; Schoneberger M
    Phys Ther; 1999 Feb; 79(2):146-58. PubMed ID: 10029055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of metabolic cost, performance, and efficiency of propulsion using an ergonomic hand drive mechanism and a conventional manual wheelchair.
    Zukowski LA; Roper JA; Shechtman O; Otzel DM; Bouwkamp J; Tillman MD
    Arch Phys Med Rehabil; 2014 Mar; 95(3):546-51. PubMed ID: 24016403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiological response to the ambulatory performance of hand-rim and arm-crank propulsion systems.
    Mukherjee G; Samanta A
    J Rehabil Res Dev; 2001; 38(4):391-9. PubMed ID: 11563492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wheelchair users' perceived exertion during typical mobility activities.
    Qi L; Ferguson-Pell M; Salimi Z; Haennel R; Ramadi A
    Spinal Cord; 2015 Sep; 53(9):687-91. PubMed ID: 25777329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Power-assisted wheels ease energy costs and perceptual responses to wheelchair propulsion in persons with shoulder pain and spinal cord injury.
    Nash MS; Koppens D; van Haaren M; Sherman AL; Lippiatt JP; Lewis JE
    Arch Phys Med Rehabil; 2008 Nov; 89(11):2080-5. PubMed ID: 18996235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of floor surface on the energy cost of wheelchair propulsion.
    Wolfe GA; Waters R; Hislop HJ
    Phys Ther; 1977 Sep; 57(9):1022-7. PubMed ID: 142993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physical fitness training for wheelchair ambulation by the arm crank propulsion technique.
    Mukherjee G; Bhowmik P; Samanta A
    Clin Rehabil; 2001 Apr; 15(2):125-32. PubMed ID: 11330757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of steering on the physiological energy cost of wheelchair propulsion.
    Reid M; Lawrie AT; Hunter J; Warren PM
    Scand J Rehabil Med; 1990; 22(3):139-43. PubMed ID: 2244191
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy Cost of Lower Body Dressing, Pop-Over Transfers, and Manual Wheelchair Propulsion in People with Paraplegia Due to Motor-Complete Spinal Cord Injury.
    Lynch MM; McCormick Z; Liem B; Jacobs G; Hwang P; Hornby TG; Rydberg L; Roth EJ
    Top Spinal Cord Inj Rehabil; 2015; 21(2):140-8. PubMed ID: 26364283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy requirements of gamefield exercises designed for wheelchair-bound persons.
    Cardús D; McTaggart WG; Ribas-Cardús F; Donovan WH
    Arch Phys Med Rehabil; 1989 Feb; 70(2):124-7. PubMed ID: 2916929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimum cycle frequencies in hand-rim wheelchair propulsion. Wheelchair propulsion technique.
    van der Woude LH; Veeger HE; Rozendal RH; Sargeant AJ
    Eur J Appl Physiol Occup Physiol; 1989; 58(6):625-32. PubMed ID: 2731532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxygen consumption of elderly persons with bilateral below knee amputations: ambulation vs wheelchair propulsion.
    DuBow LL; Witt PL; Kadaba MP; Reyes R; Cochran V
    Arch Phys Med Rehabil; 1983 Jun; 64(6):255-9. PubMed ID: 6860095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The maximum physiological responses during incremental wheelchair and arm cranking exercise in male paraplegics.
    Gass GC; Camp EM
    Med Sci Sports Exerc; 1984 Aug; 16(4):355-9. PubMed ID: 6436633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy expenditure of paraplegic marathon runners measured during a wheelchair marathon.
    Asayama K; Nakamura Y; Ogata H; Morita H; Kodama S; Hatada K
    J UOEH; 1984 Jun; 6(2):121-30. PubMed ID: 6484367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aerobic metabolism and cardioventilatory responses in paraplegic athletes during an incremental wheelchair exercise.
    Vinet A; Le Gallais D; Bernard PL; Poulain M; Varray A; Mercier J; Micallef JP
    Eur J Appl Physiol Occup Physiol; 1997; 76(5):455-61. PubMed ID: 9367286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arm crank vs handrim wheelchair propulsion: metabolic and cardiopulmonary responses.
    Smith PA; Glaser RM; Petrofsky JS; Underwood PD; Smith GB; Richard JJ
    Arch Phys Med Rehabil; 1983 Jun; 64(6):249-54. PubMed ID: 6860094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlation of heart rate at lactate minimum and maximal lactate steady state in wheelchair-racing athletes.
    Perret C; Labruyère R; Mueller G; Strupler M
    Spinal Cord; 2012 Jan; 50(1):33-6. PubMed ID: 21894166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the metabolic demands of dance performance using three mobility devices for a dancer with spinal cord injury and an able-bodied dancer.
    Mengelkoch LJ; Highsmith MJ; Morris ML
    Med Probl Perform Art; 2014 Sep; 29(3):163-7. PubMed ID: 25194114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Walking and wheelchair energetics in persons with paraplegia.
    Cerny D; Waters R; Hislop H; Perry J
    Phys Ther; 1980 Sep; 60(9):1133-9. PubMed ID: 7413741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.