These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 36285697)

  • 1. Thermally Stable Nanotwins: New Heights for Cu Mechanics.
    Edwards TEJ; Rohbeck N; Huszár E; Thomas K; Putz B; Polyakov MN; Maeder X; Pethö L; Michler J
    Adv Sci (Weinh); 2022 Dec; 9(34):e2203544. PubMed ID: 36285697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrastrong nanotwinned pure nickel with extremely fine twin thickness.
    Duan F; Lin Y; Pan J; Zhao L; Guo Q; Zhang D; Li Y
    Sci Adv; 2021 Jun; 7(27):. PubMed ID: 34193428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ideal maximum strengths and defect-induced softening in nanocrystalline-nanotwinned metals.
    Ke X; Ye J; Pan Z; Geng J; Besser MF; Qu D; Caro A; Marian J; Ott RT; Wang YM; Sansoz F
    Nat Mater; 2019 Nov; 18(11):1207-1214. PubMed ID: 31548629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ observation of nanotwins formation through twin terrace growth in pulse electrodeposited Cu films.
    Cheng G; Li H; Xu G; Gai W; Luo L
    Sci Rep; 2017 Sep; 7(1):12393. PubMed ID: 28963542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth of large-scale nanotwinned Cu nanowire arrays from anodic aluminum oxide membrane by electrochemical deposition process: controllable nanotwin density and growth orientation with enhanced electrical endurance performance.
    Chan TC; Lin YM; Tsai HW; Wang ZM; Liao CN; Chueh YL
    Nanoscale; 2014 Jul; 6(13):7332-8. PubMed ID: 24862643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extreme creep resistance in a microstructurally stable nanocrystalline alloy.
    Darling KA; Rajagopalan M; Komarasamy M; Bhatia MA; Hornbuckle BC; Mishra RS; Solanki KN
    Nature; 2016 Sep; 537(7620):378-81. PubMed ID: 27629642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanotwin-assisted grain growth in nanocrystalline gold films under cyclic loading.
    Luo XM; Zhu XF; Zhang GP
    Nat Commun; 2014; 5():3021. PubMed ID: 24389459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deformation mechanisms in nanotwinned metal nanopillars.
    Jang D; Li X; Gao H; Greer JR
    Nat Nanotechnol; 2012 Sep; 7(9):594-601. PubMed ID: 22796745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hierarchical nanotwins in single-crystal-like nickel with high strength and corrosion resistance produced via a hybrid technique.
    Li Q; Xue S; Price P; Sun X; Ding J; Shang Z; Fan Z; Wang H; Zhang Y; Chen Y; Wang H; Hattar K; Zhang X
    Nanoscale; 2020 Jan; 12(3):1356-1365. PubMed ID: 31854411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of grain boundary characteristics on thermal stability in nanotwinned copper.
    Niu R; Han K; Su YF; Besara T; Siegrist TM; Zuo X
    Sci Rep; 2016 Aug; 6():31410. PubMed ID: 27514474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanotwinned metal MEMS films with unprecedented strength and stability.
    Sim GD; Krogstad JA; Reddy KM; Xie KY; Valentino GM; Weihs TP; Hemker KJ
    Sci Adv; 2017 Jun; 3(6):e1700685. PubMed ID: 28782015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlation between the Microstructures of Bonding Interfaces and the Shear Strength of Cu-to-Cu Joints Using (111)-Oriented and Nanotwinned Cu.
    Juang JY; Lu CL; Li YJ; Tu KN; Chen C
    Materials (Basel); 2018 Nov; 11(12):. PubMed ID: 30477274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Defective twin boundaries in nanotwinned metals.
    Wang YM; Sansoz F; LaGrange T; Ott RT; Marian J; Barbee TW; Hamza AV
    Nat Mater; 2013 Aug; 12(8):697-702. PubMed ID: 23685864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Copper-to-copper direct bonding on highly (111)-oriented nanotwinned copper in no-vacuum ambient.
    Juang JY; Lu CL; Chen KJ; Chen CA; Hsu PN; Chen C; Tu KN
    Sci Rep; 2018 Sep; 8(1):13910. PubMed ID: 30224717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Eliminating Cu-Cu Bonding Interfaces Using Electroplated Copper and (111)-Oriented Nanotwinned Copper.
    Lu TF; Cheng YF; Wang PW; Yen YT; Wu YS
    Materials (Basel); 2024 Jul; 17(14):. PubMed ID: 39063759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-temperature direct copper-to-copper bonding enabled by creep on (111) surfaces of nanotwinned Cu.
    Liu CM; Lin HW; Huang YS; Chu YC; Chen C; Lyu DR; Chen KN; Tu KN
    Sci Rep; 2015 May; 5():9734. PubMed ID: 25962757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanovoid formation mechanism in nanotwinned Cu.
    Fan C; Wang H; Zhang X
    Discov Nano; 2024 Mar; 19(1):43. PubMed ID: 38468015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanotwinned diamond with unprecedented hardness and stability.
    Huang Q; Yu D; Xu B; Hu W; Ma Y; Wang Y; Zhao Z; Wen B; He J; Liu Z; Tian Y
    Nature; 2014 Jun; 510(7504):250-3. PubMed ID: 24919919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direction-tunable nanotwins in copper nanowires by laser-assisted electrochemical deposition.
    Liu Z; Wang Y; Liao Y; Cheng GJ
    Nanotechnology; 2012 Mar; 23(12):125602. PubMed ID: 22414912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid heating induced ultrahigh stability of nanograined copper.
    Li XY; Zhou X; Lu K
    Sci Adv; 2020 Apr; 6(17):eaaz8003. PubMed ID: 32494653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.