These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 36285727)
41. Progressive expansion of albumin adducts for organophosphorus nerve agent traceability based on single and group adduct collection. Wang J; Lu X; Gao R; Pei C; Wang H Anal Bioanal Chem; 2024 Jun; 416(15):3569-3584. PubMed ID: 38698257 [TBL] [Abstract][Full Text] [Related]
42. Comparison of the effects of diisopropylfluorophosphate, sarin, soman, and tabun on toxicity and brain acetylcholinesterase activity in mice. Tripathi HL; Dewey WL J Toxicol Environ Health; 1989; 26(4):437-46. PubMed ID: 2709438 [TBL] [Abstract][Full Text] [Related]
43. Ultrasensitive surface-enhanced Raman scattering detection of trypsin based on anti-aggregation of 4-mercaptopyridine-functionalized silver nanoparticles: an optical sensing platform toward proteases. Chen L; Fu X; Li J Nanoscale; 2013 Jul; 5(13):5905-11. PubMed ID: 23703031 [TBL] [Abstract][Full Text] [Related]
44. Mechanisms of acetylcholinesterase protection against sarin and soman by adenosine A Beste A; Taylor DE; Shih TM; Thomas TP Comput Biol Chem; 2018 Aug; 75():74-81. PubMed ID: 29747078 [TBL] [Abstract][Full Text] [Related]
45. A Novel Potential Biomarker on Y263 Site in Human Serum Albumin Poisoned by Six Nerve Agents. Fu F; Sun F; Lu X; Song T; Ding J; Gao R; Wang H; Pei C J Chromatogr B Analyt Technol Biomed Life Sci; 2019 Jan; 1104():168-175. PubMed ID: 30496974 [TBL] [Abstract][Full Text] [Related]
46. Duplex Surface Enhanced Raman Scattering-Based Lateral Flow Immunosensor for the Low-Level Detection of Antibiotic Residues in Milk. Fan R; Tang S; Luo S; Liu H; Zhang W; Yang C; He L; Chen Y Molecules; 2020 Nov; 25(22):. PubMed ID: 33187181 [TBL] [Abstract][Full Text] [Related]
47. Multifunctional Au@Pt@Ag NPs with color-photothermal-Raman properties for multimodal lateral flow immunoassay. Yang H; He Q; Lin M; Ji L; Zhang L; Xiao H; Li S; Li Q; Cui X; Zhao S J Hazard Mater; 2022 Aug; 435():129082. PubMed ID: 35650752 [TBL] [Abstract][Full Text] [Related]
48. A ratiometric fluorescence probe based on graphene quantum dots and o-phenylenediamine for highly sensitive detection of acetylcholinesterase activity. Ye M; Lin B; Yu Y; Li H; Wang Y; Zhang L; Cao Y; Guo M Mikrochim Acta; 2020 Aug; 187(9):511. PubMed ID: 32833082 [TBL] [Abstract][Full Text] [Related]
49. Analysis of silver nanoparticles in antimicrobial products using surface-enhanced Raman spectroscopy (SERS). Guo H; Zhang Z; Xing B; Mukherjee A; Musante C; White JC; He L Environ Sci Technol; 2015 Apr; 49(7):4317-24. PubMed ID: 25775209 [TBL] [Abstract][Full Text] [Related]
50. Advantages of the WRAIR whole blood cholinesterase assay: comparative analysis to the micro-Ellman, Test-mate ChE, and Michel (DeltapH) assays. Haigh JR; Lefkowitz LJ; Capacio BR; Doctor BP; Gordon RK Chem Biol Interact; 2008 Sep; 175(1-3):417-20. PubMed ID: 18555983 [TBL] [Abstract][Full Text] [Related]
52. In vivo cholinesterase inhibitory specificity of organophosphorus nerve agents. Shih TM; Kan RK; McDonough JH Chem Biol Interact; 2005 Dec; 157-158():293-303. PubMed ID: 16256093 [TBL] [Abstract][Full Text] [Related]
53. In situ induced metal-enhanced fluorescence: a new strategy for biosensing the total acetylcholinesterase activity in sub-microliter human whole blood. Ma K; Lu L; Qi Z; Feng J; Zhuo C; Zhang Y Biosens Bioelectron; 2015 Jun; 68():648-653. PubMed ID: 25660508 [TBL] [Abstract][Full Text] [Related]
54. Biosensor based on self-assembling acetylcholinesterase on carbon nanotubes for flow injection/amperometric detection of organophosphate pesticides and nerve agents. Liu G; Lin Y Anal Chem; 2006 Feb; 78(3):835-43. PubMed ID: 16448058 [TBL] [Abstract][Full Text] [Related]
55. Single-particle enumeration-based ultrasensitive enzyme activity quantification with fluorescent polymer nanoparticles. Han Y; Ye Z; Wang F; Chen T; Wei L; Chen L; Xiao L Nanoscale; 2019 Aug; 11(31):14793-14801. PubMed ID: 31353389 [TBL] [Abstract][Full Text] [Related]
56. Development of a filter-based method for detecting silver nanoparticles and their heteroaggregation in aqueous environments by surface-enhanced Raman spectroscopy. Guo H; Xing B; He L Environ Pollut; 2016 Apr; 211():198-205. PubMed ID: 26774766 [TBL] [Abstract][Full Text] [Related]
57. New findings about Ellman's method to determine cholinesterase activity. Komersová A; Komers K; Cegan A Z Naturforsch C J Biosci; 2007; 62(1-2):150-4. PubMed ID: 17425121 [TBL] [Abstract][Full Text] [Related]
58. Chemical synthesis of two series of nerve agent model compounds and their stereoselective interaction with human acetylcholinesterase and human butyrylcholinesterase. Barakat NH; Zheng X; Gilley CB; MacDonald M; Okolotowicz K; Cashman JR; Vyas S; Beck JM; Hadad CM; Zhang J Chem Res Toxicol; 2009 Oct; 22(10):1669-79. PubMed ID: 19715346 [TBL] [Abstract][Full Text] [Related]
59. Selective surface-enhanced Raman scattering detection of Tabun, VX and Cyclosarin nerve agents using 4-pyridine amide oxime functionalized gold nanopillars. Juhlin L; Mikaelsson T; Hakonen A; Schmidt MS; Rindzevicius T; Boisen A; Käll M; Andersson PO Talanta; 2020 May; 211():120721. PubMed ID: 32070593 [TBL] [Abstract][Full Text] [Related]
60. Ultraviolet Raman spectra and cross-sections of the G-series nerve agents. Christesen SD; Pendell Jones J; Lochner JM; Hyre AM Appl Spectrosc; 2008 Oct; 62(10):1078-83. PubMed ID: 18926015 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]