These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 36286405)

  • 1. Intercepting Elusive Intermediates in Cu-Mediated CO Electrochemical Reduction with Alkyl Species.
    Li J; Li C; Hou J; Gao W; Chang X; Lu Q; Xu B
    J Am Chem Soc; 2022 Nov; 144(44):20495-20506. PubMed ID: 36286405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Restructuring of Cu-based Catalysts during CO Electroreduction: Evidence for the Dominant Role of Surface Defects on the C
    Rollier FA; Muravev V; Parastaev A; van de Poll RCJ; Heinrichs JMJJ; Ligt B; Simons JFM; Figueiredo MC; Hensen EJM
    ACS Catal; 2024 Sep; 14(17):13246-13259. PubMed ID: 39263539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Steering the Dynamics of Reaction Intermediates and Catalyst Surface during Electrochemical Pulsed CO
    Li Z; Wang L; Wang T; Sun L; Yang W
    J Am Chem Soc; 2023 Sep; 145(37):20655-20664. PubMed ID: 37639564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlating CO Coverage and CO Electroreduction on Cu via High-Pressure
    Hou J; Chang X; Li J; Xu B; Lu Q
    J Am Chem Soc; 2022 Dec; 144(48):22202-22211. PubMed ID: 36404600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. C-C Coupling Is Unlikely to Be the Rate-Determining Step in the Formation of C
    Chang X; Li J; Xiong H; Zhang H; Xu Y; Xiao H; Lu Q; Xu B
    Angew Chem Int Ed Engl; 2022 Jan; 61(2):e202111167. PubMed ID: 34779566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanistic Insights into Electroreductive C-C Coupling between CO and Acetaldehyde into Multicarbon Products.
    Chang X; Malkani A; Yang X; Xu B
    J Am Chem Soc; 2020 Feb; 142(6):2975-2983. PubMed ID: 31975588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanistic Insights into the Unique Role of Copper in CO
    Liu SP; Zhao M; Gao W; Jiang Q
    ChemSusChem; 2017 Jan; 10(2):387-393. PubMed ID: 27943655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface Water as an Initial Proton Source for the Electrochemical CO Reduction Reaction on Copper Surfaces.
    Shao F; Xia Z; You F; Wong JK; Low QH; Xiao H; Yeo BS
    Angew Chem Int Ed Engl; 2023 Jan; 62(3):e202214210. PubMed ID: 36369647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanistic Implications of Low CO Coverage on Cu in the Electrochemical CO and CO
    Chang X; Xiong H; Lu Q; Xu B
    JACS Au; 2023 Nov; 3(11):2948-2963. PubMed ID: 38034971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic Changes in the Structure, Chemical State and Catalytic Selectivity of Cu Nanocubes during CO
    Grosse P; Gao D; Scholten F; Sinev I; Mistry H; Roldan Cuenya B
    Angew Chem Int Ed Engl; 2018 May; 57(21):6192-6197. PubMed ID: 29578622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlling the Oxidation State of the Cu Electrode and Reaction Intermediates for Electrochemical CO
    Chou TC; Chang CC; Yu HL; Yu WY; Dong CL; Velasco-Vélez JJ; Chuang CH; Chen LC; Lee JF; Chen JM; Wu HL
    J Am Chem Soc; 2020 Feb; 142(6):2857-2867. PubMed ID: 31955572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ spectroelectrochemical probing of CO redox landscape on copper single-crystal surfaces.
    Shao F; Wong JK; Low QH; Iannuzzi M; Li J; Lan J
    Proc Natl Acad Sci U S A; 2022 Jul; 119(29):e2118166119. PubMed ID: 35858341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Situ Engineering of the Cu
    Du R; Li T; Wu Q; Wang P; Yang X; Fan Y; Qiu Y; Yan K; Wang P; Zhao Y; Zhao WW; Chen G
    ACS Appl Mater Interfaces; 2022 Aug; 14(32):36527-36535. PubMed ID: 35926997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical insights into the sites and mechanisms for base catalyzed esterification and aldol condensation reactions over Cu.
    Neurock M; Tao Z; Chemburkar A; Hibbitts DD; Iglesia E
    Faraday Discuss; 2017 Apr; 197():59-86. PubMed ID: 28332665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Relevance of the Interfacial Water Reactivity for Electrochemical CO Reduction on Copper Single Crystals.
    Winkler D; Leitner M; Auer A; Kunze-Liebhäuser J
    ACS Catal; 2024 Jan; 14(2):1098-1106. PubMed ID: 38269043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cross-coupling reaction of alkyl halides with grignard reagents catalyzed by Ni, Pd, or Cu complexes with pi-carbon ligand(s).
    Terao J; Kambe N
    Acc Chem Res; 2008 Nov; 41(11):1545-54. PubMed ID: 18973349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advances in Rhodium-Catalyzed Oxidative Arene Alkenylation.
    Zhu W; Gunnoe TB
    Acc Chem Res; 2020 Apr; 53(4):920-936. PubMed ID: 32239913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The
    Chen C; Yan X; Wu Y; Liu S; Sun X; Zhu Q; Feng R; Wu T; Qian Q; Liu H; Zheng L; Zhang J; Han B
    Chem Sci; 2021 Apr; 12(16):5938-5943. PubMed ID: 35342541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrokinetic Analysis-Driven Promotion of Electrocatalytic CO Reduction to n-Propanol.
    Yan Y; Liu K; Yang C; Chen Y; Lv X; Hu C; Zhang L; Zheng G
    Small; 2024 Oct; ():e2406345. PubMed ID: 39358961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical Insights into Potential-Dependent C-C Bond Formation Mechanisms during CO
    Ou L; He Z; Yang H; Chen Y
    ACS Omega; 2021 Jul; 6(28):17839-17847. PubMed ID: 34308019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.