BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 36286485)

  • 21. Characterization of the Caulobacter crescentus holdfast polysaccharide biosynthesis pathway reveals significant redundancy in the initiating glycosyltransferase and polymerase steps.
    Toh E; Kurtz HD; Brun YV
    J Bacteriol; 2008 Nov; 190(21):7219-31. PubMed ID: 18757530
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Physiochemical properties of Caulobacter crescentus holdfast: a localized bacterial adhesive.
    Berne C; Ma X; Licata NA; Neves BR; Setayeshgar S; Brun YV; Dragnea B
    J Phys Chem B; 2013 Sep; 117(36):10492-503. PubMed ID: 23924278
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spectroscopic Identification of Peptide Chemistry in the
    Nyarko A; Singla S; Barton HA; Dhinojwala A
    Biochemistry; 2020 Sep; 59(37):3508-3516. PubMed ID: 32844640
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Surface contact stimulates the just-in-time deployment of bacterial adhesins.
    Li G; Brown PJ; Tang JX; Xu J; Quardokus EM; Fuqua C; Brun YV
    Mol Microbiol; 2012 Jan; 83(1):41-51. PubMed ID: 22053824
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Holdfast formation in motile swarmer cells optimizes surface attachment during Caulobacter crescentus development.
    Levi A; Jenal U
    J Bacteriol; 2006 Jul; 188(14):5315-8. PubMed ID: 16816207
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The screening and expression of polysaccharide deacetylase from Caulobacter crescentus and its function analysis.
    Liu Q; Hao LF; Chen Y; Liu ZC; Xing WW; Zhang C; Fu WL; Xu DG
    Biotechnol Appl Biochem; 2023 Apr; 70(2):688-696. PubMed ID: 35932185
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Holdfast spreading and thickening during Caulobacter crescentus attachment to surfaces.
    Li G; Brun YV; Tang JX
    BMC Microbiol; 2013 Jun; 13():139. PubMed ID: 23777390
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Caulobacter crescentus holdfast: identification of holdfast attachment complex genes.
    Kurtz HD; Smit J
    FEMS Microbiol Lett; 1994 Feb; 116(2):175-82. PubMed ID: 8150261
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Timescales and Frequencies of Reversible and Irreversible Adhesion Events of Single Bacterial Cells.
    Hoffman MD; Zucker LI; Brown PJ; Kysela DT; Brun YV; Jacobson SC
    Anal Chem; 2015 Dec; 87(24):12032-9. PubMed ID: 26496389
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Attachment of the adhesive holdfast organelle to the cellular stalk of Caulobacter crescentus.
    Ong CJ; Wong ML; Smit J
    J Bacteriol; 1990 Mar; 172(3):1448-56. PubMed ID: 2307655
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tad Pili Play a Dynamic Role in Caulobacter crescentus Surface Colonization.
    Sangermani M; Hug I; Sauter N; Pfohl T; Jenal U
    mBio; 2019 Jun; 10(3):. PubMed ID: 31213565
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The elastic properties of the caulobacter crescentus adhesive holdfast are dependent on oligomers of N-acetylglucosamine.
    Li G; Smith CS; Brun YV; Tang JX
    J Bacteriol; 2005 Jan; 187(1):257-65. PubMed ID: 15601710
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Feedback regulation of Caulobacter crescentus holdfast synthesis by flagellum assembly via the holdfast inhibitor HfiA.
    Berne C; Ellison CK; Agarwal R; Severin GB; Fiebig A; Morton RI; Waters CM; Brun YV
    Mol Microbiol; 2018 Oct; 110(2):219-238. PubMed ID: 30079982
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reflections on a sticky situation: how surface contact pulls the trigger for bacterial adhesion.
    Kirkpatrick CL; Viollier PH
    Mol Microbiol; 2012 Jan; 83(1):7-9. PubMed ID: 22092444
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fluctuation analysis of Caulobacter crescentus adhesion.
    Alipour-Assiabi E; Li G; Powers TR; Tang JX
    Biophys J; 2006 Mar; 90(6):2206-12. PubMed ID: 16361338
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regulation of bacterial surface attachment by a network of sensory transduction proteins.
    Reyes Ruiz LM; Fiebig A; Crosson S
    PLoS Genet; 2019 May; 15(5):e1008022. PubMed ID: 31075103
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bypassing the need for subcellular localization of a polysaccharide export-anchor complex by overexpressing its protein subunits.
    Javens J; Wan Z; Hardy GG; Brun YV
    Mol Microbiol; 2013 Jul; 89(2):350-71. PubMed ID: 23714375
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Obstruction of pilus retraction stimulates bacterial surface sensing.
    Ellison CK; Kan J; Dillard RS; Kysela DT; Ducret A; Berne C; Hampton CM; Ke Z; Wright ER; Biais N; Dalia AB; Brun YV
    Science; 2017 Oct; 358(6362):535-538. PubMed ID: 29074778
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A cell cycle and nutritional checkpoint controlling bacterial surface adhesion.
    Fiebig A; Herrou J; Fumeaux C; Radhakrishnan SK; Viollier PH; Crosson S
    PLoS Genet; 2014 Jan; 10(1):e1004101. PubMed ID: 24465221
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Scaling down for a broader understanding of underwater adhesives - a case for the Caulobacter crescentus holdfast.
    Nyarko A; Barton H; Dhinojwala A
    Soft Matter; 2016 Nov; 12(45):9132-9141. PubMed ID: 27812588
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.