BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 36286485)

  • 41. Dynamics and control of biofilms of the oligotrophic bacterium Caulobacter crescentus.
    Entcheva-Dimitrov P; Spormann AM
    J Bacteriol; 2004 Dec; 186(24):8254-66. PubMed ID: 15576774
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A Rhizobiales-Specific Unipolar Polysaccharide Adhesin Contributes to Rhodopseudomonas palustris Biofilm Formation across Diverse Photoheterotrophic Conditions.
    Fritts RK; LaSarre B; Stoner AM; Posto AL; McKinlay JB
    Appl Environ Microbiol; 2017 Feb; 83(4):. PubMed ID: 27986718
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cell dispersal in biofilms: an extracellular DNA masks nature's strongest glue.
    Kirkpatrick CL; Viollier PH
    Mol Microbiol; 2010 Aug; 77(4):801-4. PubMed ID: 20572936
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A bacterial extracellular DNA inhibits settling of motile progeny cells within a biofilm.
    Berne C; Kysela DT; Brun YV
    Mol Microbiol; 2010 Aug; 77(4):815-29. PubMed ID: 20598083
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Analysis of a Caulobacter crescentus gene cluster involved in attachment of the holdfast to the cell.
    Kurtz HD; Smith J
    J Bacteriol; 1992 Feb; 174(3):687-94. PubMed ID: 1732204
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Second messenger-mediated tactile response by a bacterial rotary motor.
    Hug I; Deshpande S; Sprecher KS; Pfohl T; Jenal U
    Science; 2017 Oct; 358(6362):531-534. PubMed ID: 29074777
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A specialized MreB-dependent cell wall biosynthetic complex mediates the formation of stalk-specific peptidoglycan in Caulobacter crescentus.
    Billini M; Biboy J; Kühn J; Vollmer W; Thanbichler M
    PLoS Genet; 2019 Feb; 15(2):e1007897. PubMed ID: 30707707
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The Caulobacter crescentus Homolog of DnaA (HdaA) Also Regulates the Proteolysis of the Replication Initiator Protein DnaA.
    Wargachuk R; Marczynski GT
    J Bacteriol; 2015 Nov; 197(22):3521-32. PubMed ID: 26324449
    [TBL] [Abstract][Full Text] [Related]  

  • 49. S-layer anchoring and localization of an S-layer-associated protease in Caulobacter crescentus.
    Ford MJ; Nomellini JF; Smit J
    J Bacteriol; 2007 Mar; 189(6):2226-37. PubMed ID: 17209028
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Functional characterization of UDP-glucose:undecaprenyl-phosphate glucose-1-phosphate transferases of Escherichia coli and Caulobacter crescentus.
    Patel KB; Toh E; Fernandez XB; Hanuszkiewicz A; Hardy GG; Brun YV; Bernards MA; Valvano MA
    J Bacteriol; 2012 May; 194(10):2646-57. PubMed ID: 22408159
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Identification of genes affecting production of the adhesion organelle of Caulobacter crescentus CB2.
    Mitchell D; Smit J
    J Bacteriol; 1990 Sep; 172(9):5425-31. PubMed ID: 2168382
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The Mammalian Membrane Microenvironment Regulates the Sequential Attachment of Bacteria to Host Cells.
    Pierrat X; Wong JPH; Al-Mayyah Z; Persat A
    mBio; 2021 Aug; 12(4):e0139221. PubMed ID: 34340544
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Adhesins Involved in Attachment to Abiotic Surfaces by Gram-Negative Bacteria.
    Berne C; Ducret A; Hardy GG; Brun YV
    Microbiol Spectr; 2015 Aug; 3(4):. PubMed ID: 26350310
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cell-surface display of a Pseudomonas aeruginosa strain K pilin peptide within the paracrystalline S-layer of Caulobacter crescentus.
    Bingle WH; Nomellini JF; Smit J
    Mol Microbiol; 1997 Oct; 26(2):277-88. PubMed ID: 9383153
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Adhesion of single bacterial cells in the micronewton range.
    Tsang PH; Li G; Brun YV; Freund LB; Tang JX
    Proc Natl Acad Sci U S A; 2006 Apr; 103(15):5764-8. PubMed ID: 16585522
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Characterization of mutants of Caulobacter crescentus defective in surface attachment of the paracrystalline surface layer.
    Walker SG; Karunaratne DN; Ravenscroft N; Smit J
    J Bacteriol; 1994 Oct; 176(20):6312-23. PubMed ID: 7929003
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Proteomic profiling of the surface-exposed cell envelope proteins of Caulobacter crescentus.
    Cao Y; Bazemore-Walker CR
    J Proteomics; 2014 Jan; 97():187-94. PubMed ID: 23973469
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Non-proteinaceous bacterial adhesins challenge the antifouling properties of polymer brush coatings.
    Zeng G; Ogaki R; Meyer RL
    Acta Biomater; 2015 Sep; 24():64-73. PubMed ID: 26093067
    [TBL] [Abstract][Full Text] [Related]  

  • 59. ExbBD-dependent transport of maltodextrins through the novel MalA protein across the outer membrane of Caulobacter crescentus.
    Neugebauer H; Herrmann C; Kammer W; Schwarz G; Nordheim A; Braun V
    J Bacteriol; 2005 Dec; 187(24):8300-11. PubMed ID: 16321934
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Identification of genes affecting production of the adhesive holdfast of a marine caulobacter.
    Yun C; Ely B; Smit J
    J Bacteriol; 1994 Feb; 176(3):796-803. PubMed ID: 8300533
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.