These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 36286485)

  • 61. The curved shape of Caulobacter crescentus enhances surface colonization in flow.
    Persat A; Stone HA; Gitai Z
    Nat Commun; 2014 May; 5():3824. PubMed ID: 24806788
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Advantages and mechanisms of polarity and cell shape determination in Caulobacter crescentus.
    Lawler ML; Brun YV
    Curr Opin Microbiol; 2007 Dec; 10(6):630-7. PubMed ID: 17997127
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A novel membrane anchor for FtsZ is linked to cell wall hydrolysis in Caulobacter crescentus.
    Meier EL; Razavi S; Inoue T; Goley ED
    Mol Microbiol; 2016 Jul; 101(2):265-80. PubMed ID: 27028265
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The Caulobacter crescentus polar organelle development protein PodJ is differentially localized and is required for polar targeting of the PleC development regulator.
    Hinz AJ; Larson DE; Smith CS; Brun YV
    Mol Microbiol; 2003 Feb; 47(4):929-41. PubMed ID: 12581350
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Dissection of functional domains of the polar localization factor PodJ in Caulobacter crescentus.
    Lawler ML; Larson DE; Hinz AJ; Klein D; Brun YV
    Mol Microbiol; 2006 Jan; 59(1):301-16. PubMed ID: 16359336
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Nanowire Arrays as Cell Force Sensors To Investigate Adhesin-Enhanced Holdfast of Single Cell Bacteria and Biofilm Stability.
    Sahoo PK; Janissen R; Monteiro MP; Cavalli A; Murillo DM; Merfa MV; Cesar CL; Carvalho HF; de Souza AA; Bakkers EP; Cotta MA
    Nano Lett; 2016 Jul; 16(7):4656-64. PubMed ID: 27336224
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Bacterial Surface Spreading Is More Efficient on Nematically Aligned Polysaccharide Substrates.
    Lemon DJ; Schutzman DA; Garza AG
    J Bacteriol; 2018 Apr; 200(7):. PubMed ID: 29311278
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Exopolysaccharide production in Caulobacter crescentus: A resource allocation trade-off between protection and proliferation.
    Herr KL; Carey AM; Heckman TI; Chávez JL; Johnson CN; Harvey E; Gamroth WA; Wulfing BS; Van Kessel RA; Marks ME
    PLoS One; 2018; 13(1):e0190371. PubMed ID: 29293585
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Engineering the S-Layer of Caulobacter crescentus as a Foundation for Stable, High-Density, 2D Living Materials.
    Charrier M; Li D; Mann VR; Yun L; Jani S; Rad B; Cohen BE; Ashby PD; Ryan KR; Ajo-Franklin CM
    ACS Synth Biol; 2019 Jan; 8(1):181-190. PubMed ID: 30577690
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Mutations in the Lipopolysaccharide biosynthesis pathway interfere with crescentin-mediated cell curvature in Caulobacter crescentus.
    Cabeen MT; Murolo MA; Briegel A; Bui NK; Vollmer W; Ausmees N; Jensen GJ; Jacobs-Wagner C
    J Bacteriol; 2010 Jul; 192(13):3368-78. PubMed ID: 20435724
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Photorhabdus adhesion modification protein (Pam) binds extracellular polysaccharide and alters bacterial attachment.
    Jones RT; Sanchez-Contreras M; Vlisidou I; Amos MR; Yang G; Muñoz-Berbel X; Upadhyay A; Potter UJ; Joyce SA; Ciche TA; Jenkins AT; Bagby S; Ffrench-Constant RH; Waterfield NR
    BMC Microbiol; 2010 May; 10():141. PubMed ID: 20462430
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Identification of lipopolysaccharide O antigen synthesis genes required for attachment of the S-layer of Caulobacter crescentus.
    Awram P; Smit J
    Microbiology (Reading); 2001 Jun; 147(Pt 6):1451-1460. PubMed ID: 11390676
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Positive role of cell wall anchored proteinase PrtP in adhesion of lactococci.
    Habimana O; Le Goff C; Juillard V; Bellon-Fontaine MN; Buist G; Kulakauskas S; Briandet R
    BMC Microbiol; 2007 May; 7():36. PubMed ID: 17474995
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Legionella pneumophila Attachment to Biofilms of an Acidovorax Isolate from a Drinking Water-Consortium Requires the Lcl-Adhesin Protein.
    Chatfield CH; Zaia J; Sauer C
    Int Microbiol; 2020 Nov; 23(4):597-605. PubMed ID: 32451737
    [TBL] [Abstract][Full Text] [Related]  

  • 75. High-resolution mapping of metal ions reveals principles of surface layer assembly in Caulobacter crescentus cells.
    Herdman M; von Kügelgen A; Kureisaite-Ciziene D; Duman R; El Omari K; Garman EF; Kjaer A; Kolokouris D; Löwe J; Wagner A; Stansfeld PJ; Bharat TAM
    Structure; 2022 Feb; 30(2):215-228.e5. PubMed ID: 34800371
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Self-immobilization of recombinant Caulobacter crescentus and its application in removal of cadmium from water.
    Patel J; Wilson G; McKay RM; Vincent R; Xu Z
    Appl Biochem Biotechnol; 2010 Oct; 162(4):1160-73. PubMed ID: 20069463
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Screen for localized proteins in Caulobacter crescentus.
    Russell JH; Keiler KC
    PLoS One; 2008 Mar; 3(3):e1756. PubMed ID: 18335033
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Adhesion mechanisms of staphylococci.
    Heilmann C
    Adv Exp Med Biol; 2011; 715():105-23. PubMed ID: 21557060
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Mechanomicrobiology: How Mechanical Forces Activate Staphylococcus aureus Adhesion.
    Geoghegan JA; Dufrêne YF
    Trends Microbiol; 2018 Aug; 26(8):645-648. PubMed ID: 29866473
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The ChvG-ChvI and NtrY-NtrX Two-Component Systems Coordinately Regulate Growth of Caulobacter crescentus.
    Stein BJ; Fiebig A; Crosson S
    J Bacteriol; 2021 Aug; 203(17):e0019921. PubMed ID: 34124942
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.