These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 36286523)

  • 1. The Role of Microorganisms and Carbon-to-Nitrogen Ratios for Microbial Protein Production from Bioethanol.
    Van Peteghem L; Sakarika M; Matassa S; Rabaey K
    Appl Environ Microbiol; 2022 Nov; 88(22):e0118822. PubMed ID: 36286523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oleaginous yeasts- substrate preference and lipid productivity: a view on the performance of microbial lipid producers.
    Shaigani P; Awad D; Redai V; Fuchs M; Haack M; Mehlmer N; Brueck T
    Microb Cell Fact; 2021 Dec; 20(1):220. PubMed ID: 34876116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microalgae starch: A promising raw material for the bioethanol production.
    Maia JLD; Cardoso JS; Mastrantonio DJDS; Bierhals CK; Moreira JB; Costa JAV; Morais MG
    Int J Biol Macromol; 2020 Dec; 165(Pt B):2739-2749. PubMed ID: 33470200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The characterisation of
    Turner W; Greetham D; Du C
    Front Bioeng Biotechnol; 2022; 10():1028185. PubMed ID: 36312543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Challenges for the production of bioethanol from biomass using recombinant yeasts.
    Kricka W; Fitzpatrick J; Bond U
    Adv Appl Microbiol; 2015; 92():89-125. PubMed ID: 26003934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Algal biomass conversion to bioethanol - a step-by-step assessment.
    Harun R; Yip JW; Thiruvenkadam S; Ghani WA; Cherrington T; Danquah MK
    Biotechnol J; 2014 Jan; 9(1):73-86. PubMed ID: 24227697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptation of Saccharomyces cerevisiae to high pressure (15, 25 and 35 MPa) to enhance the production of bioethanol.
    Ferreira RM; Mota MJ; Lopes RP; Sousa S; Gomes AM; Delgadillo I; Saraiva JA
    Food Res Int; 2019 Jan; 115():352-359. PubMed ID: 30599952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pichia anomala 29X: a resistant strain for lignocellulosic biomass hydrolysate fermentation.
    Zha Y; Hossain AH; Tobola F; Sedee N; Havekes M; Punt PJ
    FEMS Yeast Res; 2013 Nov; 13(7):609-17. PubMed ID: 23826802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of yeast cell factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering.
    Hasunuma T; Kondo A
    Biotechnol Adv; 2012; 30(6):1207-18. PubMed ID: 22085593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production and characterization of yeasts grown on media composed of spruce-derived sugars and protein hydrolysates from chicken by-products.
    Lapeña D; Kosa G; Hansen LD; Mydland LT; Passoth V; Horn SJ; Eijsink VGH
    Microb Cell Fact; 2020 Feb; 19(1):19. PubMed ID: 32013957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mathematical modelling of bioethanol production from algal starch hydrolysate by Saccharomyces cerevisiae.
    Singh S; Chakravarty I; Kundu S
    Cell Mol Biol (Noisy-le-grand); 2017 Jul; 63(6):83-87. PubMed ID: 28968215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing the potential of wild yeasts for bioethanol production.
    Ruyters S; Mukherjee V; Verstrepen KJ; Thevelein JM; Willems KA; Lievens B
    J Ind Microbiol Biotechnol; 2015 Jan; 42(1):39-48. PubMed ID: 25413210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioethanol production from microalgae biomass at high-solids loadings.
    Condor BE; de Luna MDG; Chang YH; Chen JH; Leong YK; Chen PT; Chen CY; Lee DJ; Chang JS
    Bioresour Technol; 2022 Nov; 363():128002. PubMed ID: 36155816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial interactions during sugar cane must fermentation for bioethanol production: does quorum sensing play a role?
    Brexó RP; Sant'Ana AS
    Crit Rev Biotechnol; 2018 Mar; 38(2):231-244. PubMed ID: 28574287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioethanol production from defatted biomass of Nannochloropsis oculata microalgae grown under mixotrophic conditions.
    Fetyan NAH; El-Sayed AEB; Ibrahim FM; Attia YA; Sadik MW
    Environ Sci Pollut Res Int; 2022 Jan; 29(2):2588-2597. PubMed ID: 34374017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioethanol Production by Enzymatic Hydrolysis from Different Lignocellulosic Sources.
    Vasić K; Knez Ž; Leitgeb M
    Molecules; 2021 Feb; 26(3):. PubMed ID: 33535536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering strategies for improving the CO2 fixation and carbohydrate productivity of Scenedesmus obliquus CNW-N used for bioethanol fermentation.
    Ho SH; Kondo A; Hasunuma T; Chang JS
    Bioresour Technol; 2013 Sep; 143():163-71. PubMed ID: 23792755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioethanol production from the macroalgae Sargassum spp.
    Borines MG; de Leon RL; Cuello JL
    Bioresour Technol; 2013 Jun; 138():22-9. PubMed ID: 23612158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential for reduced water consumption in biorefining of lignocellulosic biomass to bioethanol and biogas.
    Yuan HW; Tan L; Kida K; Morimura S; Sun ZY; Tang YQ
    J Biosci Bioeng; 2021 May; 131(5):461-468. PubMed ID: 33526306
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.