These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 36287092)

  • 1. Chiral DNA Nanotubes Self-Assembled from Building Blocks with Tailorable Curvature and Twist.
    Dong N; Sun Y; Sun G; Zhang L; Sun S
    Small; 2022 Dec; 18(49):e2204996. PubMed ID: 36287092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-Assembled DNA Tubes Forming Helices of Controlled Diameter and Chirality.
    Maier AM; Bae W; Schiffels D; Emmerig JF; Schiff M; Liedl T
    ACS Nano; 2017 Feb; 11(2):1301-1306. PubMed ID: 28125777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large Chiral Nanotubes Self-Assembled by DNA Bricks.
    Sun S; Yang Y; Li D; Zhu J
    J Am Chem Soc; 2019 Dec; 141(50):19524-19528. PubMed ID: 31789023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of 2D DNA Nanostructures by the Coupling of Intrinsic Tile Curvature and Arm Twist.
    Jiang C; Lu B; Zhang W; Ohayon YP; Feng F; Li S; Seeman NC; Xiao SJ
    J Am Chem Soc; 2022 Apr; 144(15):6759-6769. PubMed ID: 35385657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diverse Chiral Nanotubes Assembled from Identical DNA Strands.
    Xie C; Chen Z; Chen K; Hu Y; Xu F; Pan L
    Nano Lett; 2024 Jul; 24(28):8696-8701. PubMed ID: 38967319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoscale structure and microscale stiffness of DNA nanotubes.
    Schiffels D; Liedl T; Fygenson DK
    ACS Nano; 2013 Aug; 7(8):6700-10. PubMed ID: 23879368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and synthesis of pleated DNA origami nanotubes with adjustable diameters.
    Berengut JF; Berengut JC; Doye JPK; Prešern D; Kawamoto A; Ruan J; Wainwright MJ; Lee LK
    Nucleic Acids Res; 2019 Dec; 47(22):11963-11975. PubMed ID: 31728524
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Power of Fiber Twist.
    Zhou X; Fang S; Leng X; Liu Z; Baughman RH
    Acc Chem Res; 2021 Jun; 54(11):2624-2636. PubMed ID: 33982565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chiromers: conformation-driven mirror-image supramolecular chirality isomerism identified in a new class of helical rosette nanotubes.
    Hemraz UD; El-Bakkari M; Yamazaki T; Cho JY; Beingessner RL; Fenniri H
    Nanoscale; 2014 Aug; 6(16):9421-7. PubMed ID: 24770905
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Minimalist Design of Wireframe DNA Nanotubes: Tunable Geometry, Size, Chirality, and Dynamics.
    Luo X; Saliba D; Yang T; Gentile S; Mori K; Islas P; Das T; Bagheri N; Porchetta A; Guarne A; Cosa G; Sleiman HF
    Angew Chem Int Ed Engl; 2023 Oct; 62(44):e202309869. PubMed ID: 37610293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dimerization and oligomerization of DNA-assembled building blocks for controlled multi-motion in high-order architectures.
    Xin L; Duan X; Liu N
    Nat Commun; 2021 May; 12(1):3207. PubMed ID: 34050157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Significant Enhancement of the Chiral Correlation Length in Nematic Liquid Crystals by Gold Nanoparticle Surfaces Featuring Axially Chiral Binaphthyl Ligands.
    Mori T; Sharma A; Hegmann T
    ACS Nano; 2016 Jan; 10(1):1552-64. PubMed ID: 26735843
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconfigurable Chiral Self-Assembly of Peptides through Control of Terminal Charges.
    Xie Y; Wang Y; Qi W; Huang R; Su R; He Z
    Small; 2017 Aug; 13(30):. PubMed ID: 28639349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Carbon Dioxide Bubble-Induced Vortex Triggers Co-Assembly of Nanotubes with Controlled Chirality.
    Zhang L; Zhou L; Xu N; Ouyang Z
    Angew Chem Int Ed Engl; 2017 Jul; 56(28):8191-8195. PubMed ID: 28508524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Handedness of DNA Assembly around Carbon Nanotubes Is Determined by the Chirality of DNA.
    Zerze GH; Stillinger FH; Debenedetti PG
    J Phys Chem B; 2020 Jul; 124(26):5362-5369. PubMed ID: 32503362
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chirality Inversion in Self-Assembled Nanocomposites Directed by Curvature-Mediated Interactions.
    Gong Y; Cao Z; Zhang Z; Liu R; Zhang F; Wei J; Yang Z
    Angew Chem Int Ed Engl; 2022 Mar; 61(10):e202117406. PubMed ID: 34981650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering tertiary chirality in helical biopolymers.
    Janowski J; Pham VAB; Vecchioni S; Woloszyn K; Lu B; Zou Y; Erkalo B; Perren L; Rueb J; Madnick J; Mao C; Saito M; Ohayon YP; Jonoska N; Sha R
    Proc Natl Acad Sci U S A; 2024 May; 121(19):e2321992121. PubMed ID: 38684000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of chiral morphologies of biological materials induced by chirality.
    Zhao H; Gao X; Qin Q; Wang J
    Bioinspir Biomim; 2021 Sep; 16(6):. PubMed ID: 34399414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electron microdiffraction reveals the nanoscale twist geometry of cellulose nanocrystals.
    Ogawa Y
    Nanoscale; 2019 Nov; 11(45):21767-21774. PubMed ID: 31573012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA nanotubes self-assembled from triple-crossover tiles as templates for conductive nanowires.
    Liu D; Park SH; Reif JH; LaBean TH
    Proc Natl Acad Sci U S A; 2004 Jan; 101(3):717-22. PubMed ID: 14709674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.