These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 36287369)
1. Remediation of soils on municipal rendering plant territories using Miscanthus × giganteus. Grzegórska A; Czaplicka N; Antonkiewicz J; Rybarczyk P; Baran A; Dobrzyński K; Zabrocki D; Rogala A Environ Sci Pollut Res Int; 2023 Feb; 30(9):22305-22318. PubMed ID: 36287369 [TBL] [Abstract][Full Text] [Related]
2. Comparative assessment of using Miscanthus × giganteus for remediation of soils contaminated by heavy metals: a case of military and mining sites. Nurzhanova A; Pidlisnyuk V; Abit K; Nurzhanov C; Kenessov B; Stefanovska T; Erickson L Environ Sci Pollut Res Int; 2019 May; 26(13):13320-13333. PubMed ID: 30903469 [TBL] [Abstract][Full Text] [Related]
3. The evaluation of growth and phytoextraction potential of Miscanthus x giganteus and Sida hermaphrodita on soil contaminated simultaneously with Cd, Cu, Ni, Pb, and Zn. Kocoń A; Jurga B Environ Sci Pollut Res Int; 2017 Feb; 24(5):4990-5000. PubMed ID: 27995509 [TBL] [Abstract][Full Text] [Related]
4. Aided phytostabilization using Miscanthus sinensis × giganteus on heavy metal-contaminated soils. Pavel PB; Puschenreiter M; Wenzel WW; Diacu E; Barbu CH Sci Total Environ; 2014 May; 479-480():125-31. PubMed ID: 24561291 [TBL] [Abstract][Full Text] [Related]
5. Determination of the phytoremediation efficiency of Ricinus communis L. and methane uptake from cadmium and nickel-contaminated soil using spent mushroom substrate. Sun Y; Wen C; Liang X; He C Environ Sci Pollut Res Int; 2018 Nov; 25(32):32603-32616. PubMed ID: 30242654 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of phytoremediation capability of French marigold ( Biswal B; Singh SK; Patra A; Mohapatra KK Int J Phytoremediation; 2022; 24(9):945-954. PubMed ID: 34634952 [TBL] [Abstract][Full Text] [Related]
7. Accumulation and spatial distribution of Cd, Cr, and Pb in mulberry from municipal solid waste compost following application of EDTA and (NH4)2SO4. Zhao S; Shang X; Duo L Environ Sci Pollut Res Int; 2013 Feb; 20(2):967-75. PubMed ID: 22661279 [TBL] [Abstract][Full Text] [Related]
8. The use of reed canary grass and giant miscanthus in the phytoremediation of municipal sewage sludge. Antonkiewicz J; Kołodziej B; Bielińska EJ Environ Sci Pollut Res Int; 2016 May; 23(10):9505-17. PubMed ID: 26841773 [TBL] [Abstract][Full Text] [Related]
9. Synergistic effect of pyrene and heavy metals (Zn, Pb, and Cd) on phytoremediation potential of Medicago sativa L. (alfalfa) in multi-contaminated soil. Mathur J; Panwar R Environ Sci Pollut Res Int; 2024 Mar; 31(14):21012-21027. PubMed ID: 38383928 [TBL] [Abstract][Full Text] [Related]
10. Phytoextraction of Pb and Cd by the Mediterranean saltbush (Atriplex halimus L.): metal uptake in relation to salinity. Manousaki E; Kalogerakis N Environ Sci Pollut Res Int; 2009 Nov; 16(7):844-54. PubMed ID: 19597858 [TBL] [Abstract][Full Text] [Related]
11. Role of feather reed grass ( Rolka E; Wyszkowski M; Szostek R; Glinka A Int J Phytoremediation; 2023; 25(7):868-879. PubMed ID: 36029005 [TBL] [Abstract][Full Text] [Related]
12. Phytoremediation potential of Miscanthus × giganteus and Spartina pectinata in soil contaminated with heavy metals. Korzeniowska J; Stanislawska-Glubiak E Environ Sci Pollut Res Int; 2015 Aug; 22(15):11648-57. PubMed ID: 25850746 [TBL] [Abstract][Full Text] [Related]
13. Combined effects of carbonaceous-immobilizing agents and subsequent sulphur application on maize phytoextraction efficiency in highly contaminated soil. Kroulíková S; Mohnke S; Wenzel WW; Tejnecký V; Száková J; Mercl F; Tlustoš P Environ Sci Pollut Res Int; 2019 Jul; 26(20):20866-20878. PubMed ID: 31111391 [TBL] [Abstract][Full Text] [Related]
14. Phytoremediation of Heavy Metals in Contaminated Water and Soil Using Miscanthus sp. Goedae-Uksae 1. Bang J; Kamala-Kannan S; Lee KJ; Cho M; Kim CH; Kim YJ; Bae JH; Kim KH; Myung H; Oh BT Int J Phytoremediation; 2015; 17(1-6):515-20. PubMed ID: 25747237 [TBL] [Abstract][Full Text] [Related]
15. Phytoremediation potential of weeds in heavy metal contaminated soils of the Bassa Industrial Zone of Douala, Cameroon. Lum AF; Ngwa ES; Chikoye D; Suh CE Int J Phytoremediation; 2014; 16(3):302-19. PubMed ID: 24912226 [TBL] [Abstract][Full Text] [Related]
16. Availability of heavy metals to cabbage grown in sewage sludge amended calcareous soils under greenhouse conditions. Jalali M; Imanifard A Int J Phytoremediation; 2021; 23(14):1525-1537. PubMed ID: 33945349 [TBL] [Abstract][Full Text] [Related]
17. Immobilisation of metals in a contaminated soil with biochar-compost mixtures and inorganic additives: 2-year greenhouse and field experiments. Karer J; Zehetner F; Dunst G; Fessl J; Wagner M; Puschenreiter M; Stapkēviča M; Friesl-Hanl W; Soja G Environ Sci Pollut Res Int; 2018 Jan; 25(3):2506-2516. PubMed ID: 29127635 [TBL] [Abstract][Full Text] [Related]
18. Miscanthus x giganteus culture on soils highly contaminated by metals: Modelling leaf decomposition impact on metal mobility and bioavailability in the soil-plant system. Al Souki KS; Liné C; Louvel B; Waterlot C; Douay F; Pourrut B Ecotoxicol Environ Saf; 2020 Aug; 199():110654. PubMed ID: 32402897 [TBL] [Abstract][Full Text] [Related]
19. Macroelements and heavy metals content in energy crops cultivated on contaminated soil under different fertilization-case studies on autumn harvest. Pogrzeba M; Rusinowski S; Krzyżak J Environ Sci Pollut Res Int; 2018 Apr; 25(12):12096-12106. PubMed ID: 29453723 [TBL] [Abstract][Full Text] [Related]
20. Potentials of Miscanthus x giganteus for phytostabilization of trace element-contaminated soils: Ex situ experiment. Nsanganwimana F; Al Souki KS; Waterlot C; Douay F; Pelfrêne A; Ridošková A; Louvel B; Pourrut B Ecotoxicol Environ Saf; 2021 May; 214():112125. PubMed ID: 33714138 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]