These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 36287950)
1. Application of Non-Aflatoxigenic Zhang W; Dou J; Wu Z; Li Q; Wang S; Xu H; Wu W; Sun C Toxins (Basel); 2022 Sep; 14(10):. PubMed ID: 36287950 [TBL] [Abstract][Full Text] [Related]
2. Non-aflatoxigenic Aspergillus flavus as potential biocontrol agents to reduce aflatoxin contamination in peanuts harvested in Northern Argentina. Alaniz Zanon MS; Barros GG; Chulze SN Int J Food Microbiol; 2016 Aug; 231():63-8. PubMed ID: 27220011 [TBL] [Abstract][Full Text] [Related]
3. Growth and Toxigenicity of Tengey TK; Kankam F; Ndela DN; Frempong D; Appaw WO Toxins (Basel); 2022 Aug; 14(8):. PubMed ID: 36006198 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of potential biocontrol agent for aflatoxin in Argentinean peanuts. Alaniz Zanon MS; Chiotta ML; Giaj-Merlera G; Barros G; Chulze S Int J Food Microbiol; 2013 Apr; 162(3):220-5. PubMed ID: 23454811 [TBL] [Abstract][Full Text] [Related]
5. Separate and combined applications of nontoxigenic Aspergillus flavus and A. parasiticus for biocontrol of aflatoxin in peanuts. Dorner JW; Horn BW Mycopathologia; 2007 Apr; 163(4):215-23. PubMed ID: 17390234 [TBL] [Abstract][Full Text] [Related]
6. Polyphasic approach to the identification and characterization of aflatoxigenic strains of Aspergillus section Flavi isolated from peanuts and peanut-based products marketed in Malaysia. Norlia M; Jinap S; Nor-Khaizura MAR; Son R; Chin CK; Sardjono Int J Food Microbiol; 2018 Oct; 282():9-15. PubMed ID: 29885975 [TBL] [Abstract][Full Text] [Related]
7. Development of biochar-impregnated alginate beads for the delivery of biocontrol agents for peanut aflatoxin. Feng J; Dou J; Wu W Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2022 Aug; 39(8):1487-1500. PubMed ID: 35679201 [TBL] [Abstract][Full Text] [Related]
8. Biocontrol efficacy of atoxigenic Mamo FT; Shang B; Selvaraj JN; Zheng Y; Liu Y Mycology; 2022; 13(2):143-152. PubMed ID: 35711325 [TBL] [Abstract][Full Text] [Related]
9. Molecular Characterisation of Aflatoxigenic and Non-Aflatoxigenic Strains of Norlia M; Jinap S; Nor-Khaizura MAR; Radu S; Chin CK; Samsudin NIP; Farawahida AH Toxins (Basel); 2019 Aug; 11(9):. PubMed ID: 31470527 [TBL] [Abstract][Full Text] [Related]
10. Assessment of early harvest in the prevention of aflatoxins in peanuts during drought stress conditions. Martins LM; Bragagnolo N; Calori MA; Iamanaka BT; Alves MC; da Silva JJ; de Godoy IJ; Taniwaki MH Int J Food Microbiol; 2023 Nov; 405():110336. PubMed ID: 37541018 [TBL] [Abstract][Full Text] [Related]
12. Efficacy of atoxigenic Aspergillus flavus from southern China as biocontrol agents against aflatoxin contamination in corn and peanuts. Rasheed U; Cotty PJ; Ain QU; Wang Y; Liu B Pestic Biochem Physiol; 2024 May; 201():105887. PubMed ID: 38685218 [TBL] [Abstract][Full Text] [Related]
13. Characterization of non-aflatoxigenic strains of Aspergillus flavus as potential biocontrol agent for the management of aflatoxin contamination in groundnut. Hulikunte Mallikarjunaiah N; Jayapala N; Puttaswamy H; Siddapura Ramachandrappa N Microb Pathog; 2017 Jan; 102():21-28. PubMed ID: 27856270 [TBL] [Abstract][Full Text] [Related]
14. The potential for reducing aflatoxin B1 contamination of stored peanuts by soil disinfection. Guo A; Zhang Y; Ji Y; Chen X; Zhang W; Liu X; Yan D; Fang W; Li Y; Cao A; Wang Q J Hazard Mater; 2024 May; 469():133916. PubMed ID: 38479137 [TBL] [Abstract][Full Text] [Related]
15. Biocontrol Strains Differentially Shift the Genetic Structure of Indigenous Soil Populations of Lewis MH; Carbone I; Luis JM; Payne GA; Bowen KL; Hagan AK; Kemerait R; Heiniger R; Ojiambo PS Front Microbiol; 2019; 10():1738. PubMed ID: 31417528 [TBL] [Abstract][Full Text] [Related]
16. Characterization and competitive ability of non-aflatoxigenic Aspergillus flavus isolated from the maize agro-ecosystem in Argentina as potential aflatoxin biocontrol agents. Alaniz Zanon MS; Clemente MP; Chulze SN Int J Food Microbiol; 2018 Jul; 277():58-63. PubMed ID: 29684766 [TBL] [Abstract][Full Text] [Related]
17. Field Displacement of Aflatoxigenic Weaver MA; Abbas HK Front Microbiol; 2019; 10():1788. PubMed ID: 31447810 [TBL] [Abstract][Full Text] [Related]
18. Conidial movement of nontoxigenic Aspergillus flavus and A. parasiticus in peanut fields following application to soil. Horn BW; Greene RL; Sorensen RB; Blankenship PD; Dorner JW Mycopathologia; 2001; 151(2):81-92. PubMed ID: 11554582 [TBL] [Abstract][Full Text] [Related]
19. Aspergillus flavus and aflatoxins control in long-term storage of food ingredients of Puerh tea, peanut and polished rice. Zhao W; Ma X; Yan H; Zhang L; Shi W; Zhou Y Food Chem; 2024 Dec; 461():140805. PubMed ID: 39181056 [TBL] [Abstract][Full Text] [Related]
20. Analysis of the competitiveness between a non-aflatoxigenic and an aflatoxigenic Aspergillus flavus strain on maize kernels by droplet digital PCR. Schamann A; Schmidt-Heydt M; Geisen R Mycotoxin Res; 2022 Feb; 38(1):27-36. PubMed ID: 34913138 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]