These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 36287957)
21. Bioavailable Nutrients (N and P) and Precipitation Patterns Drive Cyanobacterial Blooms in Missisquoi Bay, Lake Champlain. Celikkol S; Fortin N; Tromas N; Andriananjamanantsoa H; Greer CW Microorganisms; 2021 Oct; 9(10):. PubMed ID: 34683418 [TBL] [Abstract][Full Text] [Related]
22. Elucidation of Taste- and Odor-Producing Bacteria and Toxigenic Cyanobacteria in a Midwestern Drinking Water Supply Reservoir by Shotgun Metagenomic Analysis. Otten TG; Graham JL; Harris TD; Dreher TW Appl Environ Microbiol; 2016 Sep; 82(17):5410-20. PubMed ID: 27342564 [TBL] [Abstract][Full Text] [Related]
23. Comparison of cyanobacterial microcystin synthetase (mcy) E gene transcript levels, mcy E gene copies, and biomass as indicators of microcystin risk under laboratory and field conditions. Ngwa FF; Madramootoo CA; Jabaji S Microbiologyopen; 2014 Aug; 3(4):411-25. PubMed ID: 24838591 [TBL] [Abstract][Full Text] [Related]
24. Toxic cyanobacterial bloom triggers in missisquoi bay, lake champlain, as determined by next-generation sequencing and quantitative PCR. Fortin N; Munoz-Ramos V; Bird D; Lévesque B; Whyte LG; Greer CW Life (Basel); 2015 May; 5(2):1346-80. PubMed ID: 25984732 [TBL] [Abstract][Full Text] [Related]
25. Feedback Regulation between Aquatic Microorganisms and the Bloom-Forming Cyanobacterium Zhang M; Lu T; Paerl HW; Chen Y; Zhang Z; Zhou Z; Qian H Appl Environ Microbiol; 2019 Nov; 85(21):. PubMed ID: 31420344 [TBL] [Abstract][Full Text] [Related]
26. Nitrogen Stimulates Kim K; Mun H; Shin H; Park S; Yu C; Lee J; Yoon Y; Chung H; Yun H; Lee K; Jeong G; Oh JA; Lee I; Lee H; Kang T; Ryu HS; Park J; Shin Y; Rhew D Environ Sci Technol; 2020 Jun; 54(12):7185-7193. PubMed ID: 32496782 [TBL] [Abstract][Full Text] [Related]
27. Field and laboratory studies of fluorescence-based technologies for real-time tracking of cyanobacterial cell lysis and potential microcystins release. Tsai KP; Kirschman ZA; Moldaenke C; Chaffin JD; McClure A; Seo Y; Bridgeman TB Sci Total Environ; 2024 Apr; 920():171121. PubMed ID: 38382604 [TBL] [Abstract][Full Text] [Related]
28. Microbiome analysis reveals Romanis CS; Timms VJ; Nebauer DJ; Crosbie ND; Neilan BA Appl Environ Microbiol; 2024 Jan; 90(1):e0158523. PubMed ID: 38117057 [TBL] [Abstract][Full Text] [Related]
29. Effects of nutrient temporal variations on toxic genotype and microcystin concentration in two eutrophic lakes. Wang M; Shi W; Chen Q; Zhang J; Yi Q; Hu L Ecotoxicol Environ Saf; 2018 Dec; 166():192-199. PubMed ID: 30269014 [TBL] [Abstract][Full Text] [Related]
30. Comparison of algal harvest and hydrogen peroxide treatment in mitigating cyanobacterial blooms via an in situ mesocosm experiment. Fan F; Shi X; Zhang M; Liu C; Chen K Sci Total Environ; 2019 Dec; 694():133721. PubMed ID: 31400686 [TBL] [Abstract][Full Text] [Related]
31. Stringent Response of Cyanobacteria and Other Bacterioplankton during Different Stages of a Harmful Cyanobacterial Bloom. Li H; Bhattarai B; Barber M; Goel R Environ Sci Technol; 2023 Oct; 57(42):16016-16032. PubMed ID: 37819800 [TBL] [Abstract][Full Text] [Related]
32. Seasonal changes in the bacterial community structure of three eutrophicated urban lakes in Mexico city, with emphasis on Microcystis spp. Pineda-Mendoza RM; Briones-Roblero CI; Gonzalez-Escobedo R; Rivera-Orduña FN; Martínez-Jerónimo F; Zúñiga G Toxicon; 2020 May; 179():8-20. PubMed ID: 32142716 [TBL] [Abstract][Full Text] [Related]
33. A qPCR-Based Tool to Diagnose the Presence of Harmful Cyanobacteria and Cyanotoxins in Drinking Water Sources. Chiu YT; Chen YH; Wang TS; Yen HK; Lin TF Int J Environ Res Public Health; 2017 May; 14(5):. PubMed ID: 28531121 [TBL] [Abstract][Full Text] [Related]
34. Microcystin concentrations and congener composition in relation to environmental variables across 440 north-temperate and boreal lakes. MacKeigan PW; Zastepa A; Taranu ZE; Westrick JA; Liang A; Pick FR; Beisner BE; Gregory-Eaves I Sci Total Environ; 2023 Aug; 884():163811. PubMed ID: 37121330 [TBL] [Abstract][Full Text] [Related]
35. Temporal Dynamics of the Microbial Community Composition with a Focus on Toxic Cyanobacteria and Toxin Presence during Harmful Algal Blooms in Two South German Lakes. Scherer PI; Millard AD; Miller A; Schoen R; Raeder U; Geist J; Zwirglmaier K Front Microbiol; 2017; 8():2387. PubMed ID: 29255452 [TBL] [Abstract][Full Text] [Related]
36. Determining critical nutrient thresholds needed to control harmful cyanobacterial blooms in eutrophic Lake Taihu, China. Xu H; Paerl HW; Qin B; Zhu G; Hall NS; Wu Y Environ Sci Technol; 2015 Jan; 49(2):1051-9. PubMed ID: 25495555 [TBL] [Abstract][Full Text] [Related]
37. Response of bacterial communities to cyanobacterial harmful algal blooms in Lake Taihu, China. Su X; Steinman AD; Tang X; Xue Q; Zhao Y; Xie L Harmful Algae; 2017 Sep; 68():168-177. PubMed ID: 28962977 [TBL] [Abstract][Full Text] [Related]
38. Concentration of total microcystins associates with nitrate and nitrite, and may disrupt the nitrogen cycle, in warm-monomictic lakes of the southcentral United States. Kieley CM; Roelke DL; Park R; Campbell KL; Klobusnik NH; Walker JR; Cagle SE; Kneer ML; Stroski KM; Brooks BW; Labonté JM Harmful Algae; 2023 Dec; 130():102542. PubMed ID: 38061823 [TBL] [Abstract][Full Text] [Related]
39. Phytoplankton community interactions and cyanotoxin mixtures in three recurring surface blooms within one lake. Christensen VG; Olds HT; Norland J; Khan E J Hazard Mater; 2022 Apr; 427():128142. PubMed ID: 35042050 [TBL] [Abstract][Full Text] [Related]
40. Co-Occurrence of Microcystins and Taste-and-Odor Compounds in Drinking Water Source and Their Removal in a Full-Scale Drinking Water Treatment Plant. Shang L; Feng M; Xu X; Liu F; Ke F; Li W Toxins (Basel); 2018 Jan; 10(1):. PubMed ID: 29301296 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]