These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 36288214)

  • 1. Motor Imagery EEG Classification Based on Riemannian Sparse Optimization and Dempster-Shafer Fusion of Multi-Time-Frequency Patterns.
    Jin J; Qu T; Xu R; Wang X; Cichocki A
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():58-67. PubMed ID: 36288214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Riemannian distance based channel selection and feature extraction combining discriminative time-frequency bands and Riemannian tangent space for MI-BCIs.
    Qu T; Jin J; Xu R; Wang X; Cichocki A
    J Neural Eng; 2022 Sep; 19(5):. PubMed ID: 36126643
    [No Abstract]   [Full Text] [Related]  

  • 3. Temporally Constrained Sparse Group Spatial Patterns for Motor Imagery BCI.
    Zhang Y; Nam CS; Zhou G; Jin J; Wang X; Cichocki A
    IEEE Trans Cybern; 2019 Sep; 49(9):3322-3332. PubMed ID: 29994667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Learning Common Time-Frequency-Spatial Patterns for Motor Imagery Classification.
    Miao Y; Jin J; Daly I; Zuo C; Wang X; Cichocki A; Jung TP
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():699-707. PubMed ID: 33819158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimizing spatial patterns with sparse filter bands for motor-imagery based brain-computer interface.
    Zhang Y; Zhou G; Jin J; Wang X; Cichocki A
    J Neurosci Methods; 2015 Nov; 255():85-91. PubMed ID: 26277421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CSP-TSM: Optimizing the performance of Riemannian tangent space mapping using common spatial pattern for MI-BCI.
    Kumar S; Mamun K; Sharma A
    Comput Biol Med; 2017 Dec; 91():231-242. PubMed ID: 29100117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feature Extraction Method Based on Filter Banks and Riemannian Tangent Space in Motor-Imagery BCI.
    Fang H; Jin J; Daly I; Wang X
    IEEE J Biomed Health Inform; 2022 Jun; 26(6):2504-2514. PubMed ID: 35085095
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of MI-BCI classification method based on the Riemannian transform of personalized EEG spatiotemporal features.
    Ding X; Yang L; Li C
    Math Biosci Eng; 2023 May; 20(7):12454-12471. PubMed ID: 37501450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Motor imagery EEG classification based on ensemble support vector learning.
    Luo J; Gao X; Zhu X; Wang B; Lu N; Wang J
    Comput Methods Programs Biomed; 2020 Sep; 193():105464. PubMed ID: 32283387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temporal frequency joint sparse optimization and fuzzy fusion for motor imagery-based brain-computer interfaces.
    Zuo C; Miao Y; Wang X; Wu L; Jin J
    J Neurosci Methods; 2020 Jul; 340():108725. PubMed ID: 32311375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decoding Multi-Class Motor Imagery and Motor Execution Tasks Using Riemannian Geometry Algorithms on Large EEG Datasets.
    Shuqfa Z; Belkacem AN; Lakas A
    Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-View Multi-Scale Optimization of Feature Representation for EEG Classification Improvement.
    Jiao Y; Zhou T; Yao L; Zhou G; Wang X; Zhang Y
    IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):2589-2597. PubMed ID: 33245696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlation-based channel selection and regularized feature optimization for MI-based BCI.
    Jin J; Miao Y; Daly I; Zuo C; Hu D; Cichocki A
    Neural Netw; 2019 Oct; 118():262-270. PubMed ID: 31326660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-view optimization of time-frequency common spatial patterns for brain-computer interfaces.
    Huang Y; Jin J; Xu R; Miao Y; Liu C; Cichocki A
    J Neurosci Methods; 2022 Jan; 365():109378. PubMed ID: 34626685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A spatial-frequency-temporal optimized feature sparse representation-based classification method for motor imagery EEG pattern recognition.
    Miao M; Wang A; Liu F
    Med Biol Eng Comput; 2017 Sep; 55(9):1589-1603. PubMed ID: 28161876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cluster decomposing and multi-objective optimization based-ensemble learning framework for motor imagery-based brain-computer interfaces.
    Zuo C; Jin J; Xu R; Wu L; Liu C; Miao Y; Wang X
    J Neural Eng; 2021 Mar; 18(2):. PubMed ID: 33524961
    [No Abstract]   [Full Text] [Related]  

  • 17. EEG changes during passive movements improve the motor imagery feature extraction in BCIs-based sensory feedback calibration.
    Delisle-Rodriguez D; Silva L; Bastos-Filho T
    J Neural Eng; 2023 Feb; 20(1):. PubMed ID: 36716494
    [No Abstract]   [Full Text] [Related]  

  • 18. Adaptive Time-Frequency Segment Optimization for Motor Imagery Classification.
    Huang J; Li G; Zhang Q; Yu Q; Li T
    Sensors (Basel); 2024 Mar; 24(5):. PubMed ID: 38475214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decoding multiclass motor imagery EEG from the same upper limb by combining Riemannian geometry features and partial least squares regression.
    Chu Y; Zhao X; Zou Y; Xu W; Song G; Han J; Zhao Y
    J Neural Eng; 2020 Aug; 17(4):046029. PubMed ID: 32780720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feature Selection Using Extreme Gradient Boosting Bayesian Optimization to upgrade the Classification Performance of Motor Imagery signals for BCI.
    Thenmozhi T; Helen R
    J Neurosci Methods; 2022 Jan; 366():109425. PubMed ID: 34838951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.