BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 36288218)

  • 1. Data-Driven Design of a Six-Bar Lower-Limb Rehabilitation Mechanism Based on Gait Trajectory Prediction.
    Song W; Zhao P; Li X; Deng X; Zi B
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():109-118. PubMed ID: 36288218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of the amount of body weight support on lower limb joints' kinematics during treadmill walking at different gait speeds: Reference data on healthy adults to define trajectories for robot assistance.
    Ferrarin M; Rabuffetti M; Geda E; Sirolli S; Marzegan A; Bruno V; Sacco K
    Proc Inst Mech Eng H; 2018 Jun; 232(6):619-627. PubMed ID: 29890931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanically Assisted Neurorehabilitation: A Novel Six-Bar Linkage Mechanism for Gait Rehabilitation.
    Li M; Yan J; Zhao H; Ma G; Li Y
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():985-992. PubMed ID: 34010135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous Recognition and Assessment of Post-Stroke Hemiparetic Gait by Fusing Kinematic, Kinetic, and Electrophysiological Data.
    Cui C; Bian GB; Hou ZG; Zhao J; Su G; Zhou H; Peng L; Wang W
    IEEE Trans Neural Syst Rehabil Eng; 2018 Apr; 26(4):856-864. PubMed ID: 29641390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of a biologically inspired lower limb exoskeleton for human gait rehabilitation.
    Lyu M; Chen W; Ding X; Wang J; Bai S; Ren H
    Rev Sci Instrum; 2016 Oct; 87(10):104301. PubMed ID: 27802730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel gait-based synthesis procedure for the design of 4-bar exoskeleton with natural trajectories.
    Singh R; Chaudhary H; Singh AK
    J Orthop Translat; 2018 Jan; 12():6-15. PubMed ID: 29662774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lower limb sagittal kinematic and kinetic modeling of very slow walking for gait trajectory scaling.
    Smith AJJ; Lemaire ED; Nantel J
    PLoS One; 2018; 13(9):e0203934. PubMed ID: 30222772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Patient-specific walking pattern simulation in a gait trajectory guiding device.
    Hasan MK; Park JH; Park SH; Hwang SH; Khang G
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():7126-30. PubMed ID: 19963951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The novel quantitative technique for assessment of gait symmetry using advanced statistical learning algorithm.
    Wu J; Wu B
    Biomed Res Int; 2015; 2015():528971. PubMed ID: 25705672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of a control framework for lower limb exoskeleton rehabilitation robot based on predictive assessment.
    Wang Y; Liu Z; Feng Z
    Clin Biomech (Bristol, Avon); 2022 May; 95():105660. PubMed ID: 35561659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of a novel gait retraining device on lower limb kinematics and muscle activation in healthy adults.
    Ward SH; Wiedemann L; Stinear J; Stinear C; McDaid A
    J Biomech; 2018 Aug; 77():183-189. PubMed ID: 30037576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Lower Limb Rehabilitation Assistance Training Robot System Driven by an Innovative Pneumatic Artificial Muscle System.
    Tsai TC; Chiang MH
    Soft Robot; 2023 Feb; 10(1):1-16. PubMed ID: 35196171
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Speed-dependent reference joint trajectory generation for robotic gait support.
    Koopman B; van Asseldonk EH; van der Kooij H
    J Biomech; 2014 Apr; 47(6):1447-58. PubMed ID: 24529911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study.
    Bortole M; Venkatakrishnan A; Zhu F; Moreno JC; Francisco GE; Pons JL; Contreras-Vidal JL
    J Neuroeng Rehabil; 2015 Jun; 12():54. PubMed ID: 26076696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of predicted kinetic variables between Parkinson's disease patients and healthy age-matched control using a depth sensor-driven full-body musculoskeletal model.
    Oh J; Eltoukhy M; Kuenze C; Andersen MS; Signorile JF
    Gait Posture; 2020 Feb; 76():151-156. PubMed ID: 31862662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gait Phase Detection for Lower-Limb Exoskeletons using Foot Motion Data from a Single Inertial Measurement Unit in Hemiparetic Individuals.
    Sánchez Manchola MD; Pinto Bernal MJ; Munera M; Cifuentes CA
    Sensors (Basel); 2019 Jul; 19(13):. PubMed ID: 31284619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gaussian Process Trajectory Learning and Synthesis of Individualized Gait Motions.
    Hong J; Chun C; Kim SJ; Park FC
    IEEE Trans Neural Syst Rehabil Eng; 2019 Jun; 27(6):1236-1245. PubMed ID: 31056501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and evaluation of a prototype gait orthosis for early rehabilitation of walking.
    Fang J; Vuckovic A; Galen S; Cossar C; Conway BA; Hunt KJ
    Technol Health Care; 2014 Jan; 22(2):273-88. PubMed ID: 24898868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine Learning Strategies for Low-Cost Insole-Based Prediction of Center of Gravity during Gait in Healthy Males.
    Moon J; Lee D; Jung H; Choi A; Mun JH
    Sensors (Basel); 2022 May; 22(9):. PubMed ID: 35591188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Adaptable Human-Like Gait Pattern Generator Derived From a Lower Limb Exoskeleton.
    Mendoza-Crespo R; Torricelli D; Huegel JC; Gordillo JL; Pons JL; Soto R
    Front Robot AI; 2019; 6():36. PubMed ID: 33501052
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.