BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 36288310)

  • 1. Tight inner ring architecture and quantum motion of nuclei enable efficient energy transfer in bacterial light harvesting.
    Kundu S; Dani R; Makri N
    Sci Adv; 2022 Oct; 8(43):eadd0023. PubMed ID: 36288310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. B800-to-B850 relaxation of excitation energy in bacterial light harvesting: All-state, all-mode path integral simulations.
    Kundu S; Dani R; Makri N
    J Chem Phys; 2022 Jul; 157(1):015101. PubMed ID: 35803821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The crystal structure of the light-harvesting complex II (B800-850) from Rhodospirillum molischianum.
    Koepke J; Hu X; Muenke C; Schulten K; Michel H
    Structure; 1996 May; 4(5):581-97. PubMed ID: 8736556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coherence Maps and Flow of Excitation Energy in the Bacterial Light Harvesting Complex 2.
    Dani R; Kundu S; Makri N
    J Phys Chem Lett; 2023 Apr; 14(16):3835-3843. PubMed ID: 37067041
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Excitation Energy Transfer from Bacteriochlorophyll
    Saga Y; Yamashita M; Masaoka Y; Hidaka T; Imanishi M; Kimura Y; Nagasawa Y
    J Phys Chem B; 2021 Mar; 125(8):2009-2017. PubMed ID: 33605728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy Transfer Dynamics in Light-Harvesting Complex 2 Variants Containing Oxidized B800 Bacteriochlorophyll
    Saga Y; Otsuka Y; Tanaka A; Masaoka Y; Hidaka T; Nagasawa Y
    J Phys Chem B; 2021 Jul; 125(25):6830-6836. PubMed ID: 34139847
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of betaArg-10 in the B800 bacteriochlorophyll and carotenoid pigment environment within the light-harvesting LH2 complex of Rhodobacter sphaeroides.
    Fowler GJ; Hess S; Pullerits T; Sundström V; Hunter CN
    Biochemistry; 1997 Sep; 36(37):11282-91. PubMed ID: 9287171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconstitution of 3-Acetyl Chlorophyll
    Saga Y; Yamashita M; Imanishi M; Kimura Y; Masaoka Y; Hidaka T; Nagasawa Y
    ACS Omega; 2020 Mar; 5(12):6817-6825. PubMed ID: 32258917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective Removal of B800 Bacteriochlorophyll a from Light-Harvesting Complex 2 of the Purple Photosynthetic Bacterium Phaeospirillum molischianum.
    Saga Y; Hirota K; Matsui S; Asakawa H; Ishikita H; Saito K
    Biochemistry; 2018 May; 57(21):3075-3083. PubMed ID: 29771536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coherence in the B800 ring of purple bacteria LH2.
    Cheng YC; Silbey RJ
    Phys Rev Lett; 2006 Jan; 96(2):028103. PubMed ID: 16486648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. B800-->B850 energy transfer mechanism in bacterial LH2 complexes investigated by B800 pigment exchange.
    Herek JL; Fraser NJ; Pullerits T; Martinsson P; Polívka T; Scheer H; Cogdell RJ; Sundström V
    Biophys J; 2000 May; 78(5):2590-6. PubMed ID: 10777755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-Time Path Integral Simulation of Exciton-Vibration Dynamics in Light-Harvesting Bacteriochlorophyll Aggregates.
    Kundu S; Makri N
    J Phys Chem Lett; 2020 Oct; 11(20):8783-8789. PubMed ID: 33001649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective chemical shift assignment of B800 and B850 bacteriochlorophylls in uniformly [13C,15N]-labeled light-harvesting complexes by solid-state NMR spectroscopy at ultra-high magnetic field.
    van Gammeren AJ; Buda F; Hulsbergen FB; Kiihne S; Hollander JG; Egorova-Zachernyuk TA; Fraser NJ; Cogdell RJ; de Groot HJ
    J Am Chem Soc; 2005 Mar; 127(9):3213-9. PubMed ID: 15740162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reversible Changes in the Structural Features of Photosynthetic Light-Harvesting Complex 2 by Removal and Reconstitution of B800 Bacteriochlorophyll a Pigments.
    Saga Y; Hirota K; Asakawa H; Takao K; Fukuma T
    Biochemistry; 2017 Jul; 56(27):3484-3491. PubMed ID: 28657308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupling to Charge Transfer States is the Key to Modulate the Optical Bands for Efficient Light Harvesting in Purple Bacteria.
    Cupellini L; Caprasecca S; Guido CA; Müh F; Renger T; Mennucci B
    J Phys Chem Lett; 2018 Dec; 9(23):6892-6899. PubMed ID: 30449098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low light adaptation: energy transfer processes in different types of light harvesting complexes from Rhodopseudomonas palustris.
    Moulisová V; Luer L; Hoseinkhani S; Brotosudarmo TH; Collins AM; Lanzani G; Blankenship RE; Cogdell RJ
    Biophys J; 2009 Dec; 97(11):3019-28. PubMed ID: 19948132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of the Energy-Transfer Rates in Structural and Spectral Variants of the B800-850 Complex from Purple Bacteria.
    Tong AL; Fiebig OC; Nairat M; Harris D; Giansily M; Chenu A; Sturgis JN; Schlau-Cohen GS
    J Phys Chem B; 2020 Feb; 124(8):1460-1469. PubMed ID: 31971387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. B800-B850 coherence correlates with energy transfer rates in the LH2 complex of photosynthetic purple bacteria.
    Smyth C; Oblinsky DG; Scholes GD
    Phys Chem Chem Phys; 2015 Dec; 17(46):30805-16. PubMed ID: 25797525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum coherence spectroscopy reveals complex dynamics in bacterial light-harvesting complex 2 (LH2).
    Harel E; Engel GS
    Proc Natl Acad Sci U S A; 2012 Jan; 109(3):706-11. PubMed ID: 22215585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequential energy transfer driven by monoexponential dynamics in a biohybrid light-harvesting complex 2 (LH2).
    Yoneda Y; Kato D; Kondo M; Nagashima KVP; Miyasaka H; Nagasawa Y; Dewa T
    Photosynth Res; 2020 Feb; 143(2):115-128. PubMed ID: 31620983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.