These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 36288500)

  • 1. Hijacking a Linaridin Biosynthetic Intermediate for Lanthipeptide Production.
    Chu L; Cheng J; Zhou C; Mo T; Ji X; Zhu T; Chen J; Ma S; Gao J; Zhang Q
    ACS Chem Biol; 2022 Nov; 17(11):3198-3206. PubMed ID: 36288500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome mining and genetic analysis of cypemycin biosynthesis reveal an unusual class of posttranslationally modified peptides.
    Claesen J; Bibb M
    Proc Natl Acad Sci U S A; 2010 Sep; 107(37):16297-302. PubMed ID: 20805503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Linaridin natural products.
    Ma S; Zhang Q
    Nat Prod Rep; 2020 Sep; 37(9):1152-1163. PubMed ID: 32484193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biosynthetic Gene Cluster of Linaridin Peptides Contains Epimerase Gene.
    Xiao W; Satoh Y; Ogasawara Y; Dairi T
    Chembiochem; 2022 Jun; 23(12):e202100705. PubMed ID: 35460155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biosynthesis of aminovinyl-cysteine-containing peptides and its application in the production of potential drug candidates.
    Sit CS; Yoganathan S; Vederas JC
    Acc Chem Res; 2011 Apr; 44(4):261-8. PubMed ID: 21366289
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosynthetic Insights into Linaridin Natural Products from Genome Mining and Precursor Peptide Mutagenesis.
    Mo T; Liu WQ; Ji W; Zhao J; Chen T; Ding W; Yu S; Zhang Q
    ACS Chem Biol; 2017 Jun; 12(6):1484-1488. PubMed ID: 28452467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconstitution of the Linaridin Pathway Provides Access to the Family-Determining Activity of Two Membrane-Associated Proteins in the Formation of Structurally Underestimated Cypemycin.
    Xue Y; Wang X; Liu W
    J Am Chem Soc; 2023 Mar; 145(12):7040-7047. PubMed ID: 36921096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Legonaridin, a new member of linaridin RiPP from a Ghanaian Streptomyces isolate.
    Rateb ME; Zhai Y; Ehrner E; Rath CM; Wang X; Tabudravu J; Ebel R; Bibb M; Kyeremeh K; Dorrestein PC; Hong K; Jaspars M; Deng H
    Org Biomol Chem; 2015 Oct; 13(37):9585-92. PubMed ID: 26256511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substrate specificity of the cypemycin decarboxylase CypD.
    Ding W; Mo T; Mandalapu D; Zhang Q
    Synth Syst Biotechnol; 2018 Sep; 3(3):159-162. PubMed ID: 30345401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biosynthesis and regulation of grisemycin, a new member of the linaridin family of ribosomally synthesized peptides produced by Streptomyces griseus IFO 13350.
    Claesen J; Bibb MJ
    J Bacteriol; 2011 May; 193(10):2510-6. PubMed ID: 21421760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Convergent evolution of the Cys decarboxylases involved in aminovinyl-cysteine (AviCys) biosynthesis.
    Mo T; Yuan H; Wang F; Ma S; Wang J; Li T; Liu G; Yu S; Tan X; Ding W; Zhang Q
    FEBS Lett; 2019 Mar; 593(6):573-580. PubMed ID: 30771247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymatic Formation of an Aminovinyl Cysteine Residue in Ribosomal Peptide Natural Products.
    Cheng B; Xue Y; Duan Y; Liu W
    Chempluschem; 2024 Jun; 89(6):e202400047. PubMed ID: 38517224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Movements of the Substrate-Binding Clamp of Cypemycin Decarboxylase CypD.
    Liu L; Chan S; Mo T; Ding W; Yu S; Zhang Q; Yuan S
    J Chem Inf Model; 2019 Jun; 59(6):2924-2929. PubMed ID: 31033286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peptide epimerase-dehydratase complex responsible for biosynthesis of the linaridin class ribosomal peptides.
    Xiao W; Tsunoda T; Maruyama C; Hamano Y; Ogasawara Y; Dairi T
    Biosci Biotechnol Biochem; 2023 Oct; 87(11):1316-1322. PubMed ID: 37541960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Precursor peptide-targeted mining of more than one hundred thousand genomes expands the lanthipeptide natural product family.
    Walker MC; Eslami SM; Hetrick KJ; Ackenhusen SE; Mitchell DA; van der Donk WA
    BMC Genomics; 2020 Jun; 21(1):387. PubMed ID: 32493223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome Mining of Linaridins Provides Insights into the Widely Distributed LinC Oxidoreductases.
    Guo MX; Zhang MM; Sun K; Cui JJ; Liu YC; Gao K; Dong SH; Luo S
    J Nat Prod; 2023 Oct; 86(10):2333-2341. PubMed ID: 37819880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved lanthipeptide detection and prediction for antiSMASH.
    Blin K; Kazempour D; Wohlleben W; Weber T
    PLoS One; 2014; 9(2):e89420. PubMed ID: 24586765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unexpected Methyllanthionine Stereochemistry in the Morphogenetic Lanthipeptide SapT.
    Sarksian R; Hegemann JD; Simon MA; Acedo JZ; van der Donk WA
    J Am Chem Soc; 2022 Apr; 144(14):6373-6382. PubMed ID: 35352944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Salinipeptins: Integrated Genomic and Chemical Approaches Reveal Unusual d-Amino Acid-Containing Ribosomally Synthesized and Post-Translationally Modified Peptides (RiPPs) from a Great Salt Lake Streptomyces sp.
    Shang Z; Winter JM; Kauffman CA; Yang I; Fenical W
    ACS Chem Biol; 2019 Mar; 14(3):415-425. PubMed ID: 30753052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substrate plasticity of dehydratase SpaKC from the biosynthesis of thiosparsoamide.
    Wang C; Lu J; Zhang Y; Zheng J; Sun S; Huang S; Wang H
    J Pept Sci; 2022 Jun; 28(6):e3388. PubMed ID: 34931400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.