BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 36288694)

  • 1. DNA double-strand break-derived RNA drives TIRR/53BP1 complex dissociation.
    Ketley RF; Battistini F; Alagia A; Mondielli C; Iehl F; Balikçi E; Huber KVM; Orozco M; Gullerova M
    Cell Rep; 2022 Oct; 41(4):111526. PubMed ID: 36288694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The p53-binding protein 1-Tudor-interacting repair regulator complex participates in the DNA damage response.
    Zhang A; Peng B; Huang P; Chen J; Gong Z
    J Biol Chem; 2017 Apr; 292(16):6461-6467. PubMed ID: 28213517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TIRR inhibits the 53BP1-p53 complex to alter cell-fate programs.
    Parnandi N; Rendo V; Cui G; Botuyan MV; Remisova M; Nguyen H; Drané P; Beroukhim R; Altmeyer M; Mer G; Chowdhury D
    Mol Cell; 2021 Jun; 81(12):2583-2595.e6. PubMed ID: 33961797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular basis for the inhibition of the methyl-lysine binding function of 53BP1 by TIRR.
    Wang J; Yuan Z; Cui Y; Xie R; Yang G; Kassab MA; Wang M; Ma Y; Wu C; Yu X; Liu X
    Nat Commun; 2018 Jul; 9(1):2689. PubMed ID: 30002377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TIRR regulates 53BP1 by masking its histone methyl-lysine binding function.
    Drané P; Brault ME; Cui G; Meghani K; Chaubey S; Detappe A; Parnandi N; He Y; Zheng XF; Botuyan MV; Kalousi A; Yewdell WT; Münch C; Harper JW; Chaudhuri J; Soutoglou E; Mer G; Chowdhury D
    Nature; 2017 Mar; 543(7644):211-216. PubMed ID: 28241136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of 53BP1 activity regulation by RNA-binding TIRR and a designer protein.
    Botuyan MV; Cui G; Drané P; Oliveira C; Detappe A; Brault ME; Parnandi N; Chaubey S; Thompson JR; Bragantini B; Zhao D; Chapman JR; Chowdhury D; Mer G
    Nat Struct Mol Biol; 2018 Jul; 25(7):591-600. PubMed ID: 29967538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural basis for recognition of 53BP1 tandem Tudor domain by TIRR.
    Dai Y; Zhang A; Shan S; Gong Z; Zhou Z
    Nat Commun; 2018 May; 9(1):2123. PubMed ID: 29844495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of DNA double-strand break repair pathway choice: a new focus on 53BP1.
    Zhang F; Gong Z
    J Zhejiang Univ Sci B; 2021 Jan; 22(1):38-46. PubMed ID: 33448186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TIRR: a potential front runner in HDR race-hypotheses and perspectives.
    Anuchina AA; Lavrov AV; Smirnikhina SA
    Mol Biol Rep; 2020 Mar; 47(3):2371-2379. PubMed ID: 32036573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HDGFRP3 interaction with 53BP1 promotes DNA double-strand break repair.
    Zhang Z; Samsa WE; De Y; Zhang F; Reizes O; Almasan A; Gong Z
    Nucleic Acids Res; 2023 Mar; 51(5):2238-2256. PubMed ID: 36794849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nudix Hydrolase NUDT16 Regulates 53BP1 Protein by Reversing 53BP1 ADP-Ribosylation.
    Zhang F; Lou L; Peng B; Song X; Reizes O; Almasan A; Gong Z
    Cancer Res; 2020 Mar; 80(5):999-1010. PubMed ID: 31911551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Roles for 53BP1 in the repair of radiation-induced DNA double strand breaks.
    Shibata A; Jeggo PA
    DNA Repair (Amst); 2020 Sep; 93():102915. PubMed ID: 33087281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Roles for the DNA-PK complex and 53BP1 in protecting ends from resection during DNA double-strand break repair.
    Shibata A; Jeggo PA
    J Radiat Res; 2020 Sep; 61(5):718-726. PubMed ID: 32779701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The nuclear kinesin KIF18B promotes 53BP1-mediated DNA double-strand break repair.
    Luessing J; Sakhteh M; Sarai N; Frizzell L; Tsanov N; Ramberg KO; Maretto S; Crowley PB; Lowndes NF
    Cell Rep; 2021 Jun; 35(13):109306. PubMed ID: 34192545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acetylation of 53BP1 dictates the DNA double strand break repair pathway.
    Guo X; Bai Y; Zhao M; Zhou M; Shen Q; Yun CH; Zhang H; Zhu WG; Wang J
    Nucleic Acids Res; 2018 Jan; 46(2):689-703. PubMed ID: 29190394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GLP-catalyzed H4K16me1 promotes 53BP1 recruitment to permit DNA damage repair and cell survival.
    Lu X; Tang M; Zhu Q; Yang Q; Li Z; Bao Y; Liu G; Hou T; Lv Y; Zhao Y; Wang H; Yang Y; Cheng Z; Wen H; Liu B; Xu X; Gu L; Zhu WG
    Nucleic Acids Res; 2019 Dec; 47(21):10977-10993. PubMed ID: 31612207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AMPK-mediated phosphorylation on 53BP1 promotes c-NHEJ.
    Jiang Y; Dong Y; Luo Y; Jiang S; Meng FL; Tan M; Li J; Zang Y
    Cell Rep; 2021 Feb; 34(7):108713. PubMed ID: 33596428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of repair pathway choice at two-ended DNA double-strand breaks.
    Shibata A
    Mutat Res; 2017 Oct; 803-805():51-55. PubMed ID: 28781144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Localisation of Nup153 and SENP1 to nuclear pore complexes is required for 53BP1-mediated DNA double-strand break repair.
    Duheron V; Nilles N; Pecenko S; Martinelli V; Fahrenkrog B
    J Cell Sci; 2017 Jul; 130(14):2306-2316. PubMed ID: 28576968
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional crosstalk between DNA damage response proteins 53BP1 and BRCA1 regulates double strand break repair choice.
    Bakr A; Köcher S; Volquardsen J; Reimer R; Borgmann K; Dikomey E; Rothkamm K; Mansour WY
    Radiother Oncol; 2016 May; 119(2):276-81. PubMed ID: 26615718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.