BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 36288802)

  • 1. Genomic Signatures of Mitonuclear Coevolution in Mammals.
    Weaver RJ; Rabinowitz S; Thueson K; Havird JC
    Mol Biol Evol; 2022 Nov; 39(11):. PubMed ID: 36288802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitonuclear Coevolution, but not Nuclear Compensation, Drives Evolution of OXPHOS Complexes in Bivalves.
    Piccinini G; Iannello M; Puccio G; Plazzi F; Havird JC; Ghiselli F
    Mol Biol Evol; 2021 May; 38(6):2597-2614. PubMed ID: 33616640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relaxed selection on male mitochondrial genes in DUI bivalves eases the need for mitonuclear coevolution.
    Maeda GP; Iannello M; McConie HJ; Ghiselli F; Havird JC
    J Evol Biol; 2021 Nov; 34(11):1722-1736. PubMed ID: 34533872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Roles of Mutation, Selection, and Expression in Determining Relative Rates of Evolution in Mitochondrial versus Nuclear Genomes.
    Havird JC; Sloan DB
    Mol Biol Evol; 2016 Dec; 33(12):3042-3053. PubMed ID: 27563053
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conservative and compensatory evolution in oxidative phosphorylation complexes of angiosperms with highly divergent rates of mitochondrial genome evolution.
    Havird JC; Whitehill NS; Snow CD; Sloan DB
    Evolution; 2015 Dec; 69(12):3069-81. PubMed ID: 26514987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sexually Antagonistic Mitonuclear Coevolution in Duplicate Oxidative Phosphorylation Genes.
    Havird JC; McConie HJ
    Integr Comp Biol; 2019 Oct; 59(4):864-874. PubMed ID: 30942855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial-nuclear coadaptation revealed through mtDNA replacements in Saccharomyces cerevisiae.
    Nguyen THM; Sondhi S; Ziesel A; Paliwal S; Fiumera HL
    BMC Evol Biol; 2020 Sep; 20(1):128. PubMed ID: 32977769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of mitonuclear incompatibilities in allopatric speciation.
    Burton RS
    Cell Mol Life Sci; 2022 Jan; 79(2):103. PubMed ID: 35091831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconciling the Mitonuclear Compatibility Species Concept with Rampant Mitochondrial Introgression.
    Hill GE
    Integr Comp Biol; 2019 Oct; 59(4):912-924. PubMed ID: 30937430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Mitonuclear Dimension of Neanderthal and Denisovan Ancestry in Modern Human Genomes.
    Sharbrough J; Havird JC; Noe GR; Warren JM; Sloan DB
    Genome Biol Evol; 2017 Jun; 9(6):1567-1581. PubMed ID: 28854627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strong selective effects of mitochondrial DNA on the nuclear genome.
    Healy TM; Burton RS
    Proc Natl Acad Sci U S A; 2020 Mar; 117(12):6616-6621. PubMed ID: 32156736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Roles of Compensatory Evolution and Constraint in Aminoacyl tRNA Synthetase Evolution.
    Adrion JR; White PS; Montooth KL
    Mol Biol Evol; 2016 Jan; 33(1):152-61. PubMed ID: 26416980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Causes and Consequences of Rapidly Evolving mtDNA in a Plant Lineage.
    Havird JC; Trapp P; Miller CM; Bazos I; Sloan DB
    Genome Biol Evol; 2017 Feb; 9(2):323-336. PubMed ID: 28164243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolutionary Trajectories are Contingent on Mitonuclear Interactions.
    Biot-Pelletier D; Bettinazzi S; Gagnon-Arsenault I; Dubé AK; Bédard C; Nguyen THM; Fiumera HL; Breton S; Landry CR
    Mol Biol Evol; 2023 Apr; 40(4):. PubMed ID: 36929911
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitonuclear linkage disequilibrium in human populations.
    Sloan DB; Fields PD; Havird JC
    Proc Biol Sci; 2015 Sep; 282(1815):. PubMed ID: 26378221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial-nuclear interactions: compensatory evolution or variable functional constraint among vertebrate oxidative phosphorylation genes?
    Zhang F; Broughton RE
    Genome Biol Evol; 2013; 5(10):1781-91. PubMed ID: 23995460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitonuclear coevolution as the genesis of speciation and the mitochondrial DNA barcode gap.
    Hill GE
    Ecol Evol; 2016 Aug; 6(16):5831-42. PubMed ID: 27547358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitonuclear Compensatory Coevolution.
    Hill GE
    Trends Genet; 2020 Jun; 36(6):403-414. PubMed ID: 32396834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disrupting mitochondrial-nuclear coevolution affects OXPHOS complex I integrity and impacts human health.
    Gershoni M; Levin L; Ovadia O; Toiw Y; Shani N; Dadon S; Barzilai N; Bergman A; Atzmon G; Wainstein J; Tsur A; Nijtmans L; Glaser B; Mishmar D
    Genome Biol Evol; 2014 Sep; 6(10):2665-80. PubMed ID: 25245408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondria as environments for the nuclear genome in Drosophila: mitonuclear G×G×E.
    Rand DM; Mossman JA; Spierer AN; Santiago JA
    J Hered; 2022 Feb; 113(1):37-47. PubMed ID: 34964900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.