These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 36289038)

  • 1. A Deep Learning-Based Computer Aided Detection (CAD) System for Difficult-to-Detect Brain Metastases.
    Fairchild AT; Salama JK; Wiggins WF; Ackerson BG; Fecci PE; Kirkpatrick JP; Floyd SR; Godfrey DJ
    Int J Radiat Oncol Biol Phys; 2023 Mar; 115(3):779-793. PubMed ID: 36289038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incidence and imaging characteristics of difficult to detect retrospectively identified brain metastases in patients receiving repeat courses of stereotactic radiosurgery.
    Fairchild A; Salama JK; Godfrey D; Wiggins WF; Ackerson BG; Oyekunle T; Niedzwiecki D; Fecci PE; Kirkpatrick JP; Floyd SR
    J Neurooncol; 2024 Mar; 167(1):219-227. PubMed ID: 38340295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computer-aided Detection of Brain Metastases in T1-weighted MRI for Stereotactic Radiosurgery Using Deep Learning Single-Shot Detectors.
    Zhou Z; Sanders JW; Johnson JM; Gule-Monroe MK; Chen MM; Briere TM; Wang Y; Son JB; Pagel MD; Li J; Ma J
    Radiology; 2020 May; 295(2):407-415. PubMed ID: 32181729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MetNet: Computer-aided segmentation of brain metastases in post-contrast T1-weighted magnetic resonance imaging.
    Zhou Z; Sanders JW; Johnson JM; Gule-Monroe M; Chen M; Briere TM; Wang Y; Son JB; Pagel MD; Ma J; Li J
    Radiother Oncol; 2020 Dec; 153():189-196. PubMed ID: 32937104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time-delayed contrast-enhanced MRI improves detection of brain metastases and apparent treatment volumes.
    Kushnirsky M; Nguyen V; Katz JS; Steinklein J; Rosen L; Warshall C; Schulder M; Knisely JP
    J Neurosurg; 2016 Feb; 124(2):489-95. PubMed ID: 26361281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic segmentation of brain metastases using T1 magnetic resonance and computed tomography images.
    Hsu DG; Ballangrud Å; Shamseddine A; Deasy JO; Veeraraghavan H; Cervino L; Beal K; Aristophanous M
    Phys Med Biol; 2021 Aug; 66(17):. PubMed ID: 34315148
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stratified assessment of an FDA-cleared deep learning algorithm for automated detection and contouring of metastatic brain tumors in stereotactic radiosurgery.
    Wang JY; Qu V; Hui C; Sandhu N; Mendoza MG; Panjwani N; Chang YC; Liang CH; Lu JT; Wang L; Kovalchuk N; Gensheimer MF; Soltys SG; Pollom EL
    Radiat Oncol; 2023 Apr; 18(1):61. PubMed ID: 37016416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fully Automated MR Detection and Segmentation of Brain Metastases in Non-small Cell Lung Cancer Using Deep Learning.
    Jünger ST; Hoyer UCI; Schaufler D; Laukamp KR; Goertz L; Thiele F; Grunz JP; Schlamann M; Perkuhn M; Kabbasch C; Persigehl T; Grau S; Borggrefe J; Scheffler M; Shahzad R; Pennig L
    J Magn Reson Imaging; 2021 Nov; 54(5):1608-1622. PubMed ID: 34032344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reducing false positives in deep learning-based brain metastasis detection by using both gradient-echo and spin-echo contrast-enhanced MRI: validation in a multi-center diagnostic cohort.
    Yun S; Park JE; Kim N; Park SY; Kim HS
    Eur Radiol; 2024 May; 34(5):2873-2884. PubMed ID: 37891415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential role for LINAC-based stereotactic radiosurgery for the treatment of 5 or more radioresistant melanoma brain metastases.
    Frakes JM; Figura NB; Ahmed KA; Juan TH; Patel N; Latifi K; Sarangkasiri S; Strom TJ; Chinnaiyan P; Rao NG; Etame AB
    J Neurosurg; 2015 Nov; 123(5):1261-7. PubMed ID: 26140482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep-Learning Detection of Cancer Metastases to the Brain on MRI.
    Zhang M; Young GS; Chen H; Li J; Qin L; McFaline-Figueroa JR; Reardon DA; Cao X; Wu X; Xu X
    J Magn Reson Imaging; 2020 Oct; 52(4):1227-1236. PubMed ID: 32167652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gradual Self-Training via Confidence and Volume Based Domain Adaptation for Multi Dataset Deep Learning-Based Brain Metastases Detection Using Nonlocal Networks on MRI Images.
    Liew A; Lee CC; Subramaniam V; Lan BL; Tan M
    J Magn Reson Imaging; 2023 Jun; 57(6):1728-1740. PubMed ID: 36208095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of regular magnetic resonance imaging follow-up after stereotactic radiotherapy to the surgical cavity in patients with one to three brain metastases.
    Bachmann N; Leiser D; Ermis E; Vulcu S; Schucht P; Raabe A; Aebersold DM; Herrmann E
    Radiat Oncol; 2019 Mar; 14(1):45. PubMed ID: 30871597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MRI-based two-stage deep learning model for automatic detection and segmentation of brain metastases.
    Li R; Guo Y; Zhao Z; Chen M; Liu X; Gong G; Wang L
    Eur Radiol; 2023 May; 33(5):3521-3531. PubMed ID: 36695903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimizing intracranial metastasis detection for stereotactic radiosurgery.
    Engh JA; Flickinger JC; Niranjan A; Amin DV; Kondziolka DS; Lunsford LD
    Stereotact Funct Neurosurg; 2007; 85(4):162-8. PubMed ID: 17259753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep learning enables automatic detection and segmentation of brain metastases on multisequence MRI.
    Grøvik E; Yi D; Iv M; Tong E; Rubin D; Zaharchuk G
    J Magn Reson Imaging; 2020 Jan; 51(1):175-182. PubMed ID: 31050074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dose-Incorporated Deep Ensemble Learning for Improving Brain Metastasis Stereotactic Radiosurgery Outcome Prediction.
    Zhao J; Vaios E; Wang Y; Yang Z; Cui Y; Reitman ZJ; Lafata KJ; Fecci P; Kirkpatrick J; Fang Yin F; Floyd S; Wang C
    Int J Radiat Oncol Biol Phys; 2024 Oct; 120(2):603-613. PubMed ID: 38615888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pre-treatment factors associated with detecting additional brain metastases at stereotactic radiosurgery.
    Wardak Z; Augustyn A; Zhu H; Mickey BE; Whitworth LA; Madden CJ; Barnett SL; Abdulrahman RE; Nedzi LA; Timmerman RD; Choe KS
    J Neurooncol; 2016 Jun; 128(2):251-7. PubMed ID: 26966096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of 3.0-T MRI for stereotactic radiosurgery planning for treatment of brain metastases: a single-institution retrospective review.
    Saconn PA; Shaw EG; Chan MD; Squire SE; Johnson AJ; McMullen KP; Tatter SB; Ellis TL; Lovato J; Bourland JD; Ekstrand KE; DeGuzman AF; Munley MT
    Int J Radiat Oncol Biol Phys; 2010 Nov; 78(4):1142-6. PubMed ID: 20832185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiinstitutional prospective observational study of stereotactic radiosurgery for patients with multiple brain metastases from non-small cell lung cancer (JLGK0901 study-NSCLC).
    Shuto T; Akabane A; Yamamoto M; Serizawa T; Higuchi Y; Sato Y; Kawagishi J; Yamanaka K; Jokura H; Yomo S; Nagano O; Aoyama H
    J Neurosurg; 2018 Dec; 129(Suppl1):86-94. PubMed ID: 30544291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.