These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 36289343)

  • 1. 3D-printed machines that manipulate microscopic objects using capillary forces.
    Zeng C; Faaborg MW; Sherif A; Falk MJ; Hajian R; Xiao M; Hartig K; Bar-Sinai Y; Brenner MP; Manoharan VN
    Nature; 2022 Nov; 611(7934):68-73. PubMed ID: 36289343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Braiding, twisting, and weaving microscale fibers with capillary forces.
    Sherif A; Faaborg MW; Zeng C; Brenner MP; Manoharan VN
    Soft Matter; 2024 Apr; 20(15):3337-3348. PubMed ID: 38536453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using active colloids as machines to weave and braid on the micrometer scale.
    Goodrich CP; Brenner MP
    Proc Natl Acad Sci U S A; 2017 Jan; 114(2):257-262. PubMed ID: 28034922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cheerios Effect Controlled by Electrowetting.
    Yuan J; Feng J; Cho SK
    Langmuir; 2015 Aug; 31(30):8502-11. PubMed ID: 26146953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optocapillarity-driven assembly and reconfiguration of liquid crystal polymer actuators.
    Hu Z; Fang W; Li Q; Feng XQ; Lv JA
    Nat Commun; 2020 Nov; 11(1):5780. PubMed ID: 33188193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Equilibrium distances for the capillary interaction between floating objects.
    Poty M; Vandewalle N
    Soft Matter; 2021 Jul; 17(28):6718-6727. PubMed ID: 34198317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Capillary interactions between particles bound to interfaces, liquid films and biomembranes.
    Kralchevsky PA; Nagayama K
    Adv Colloid Interface Sci; 2000 Mar; 85(2-3):145-92. PubMed ID: 10768480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated Manipulation of Miniature Objects Underwater Using Air Capillary Bridges: Pick-and-Place, Surface Cleaning, and Underwater Origami.
    Weinstein T; Gilon H; Filc O; Sammartino C; Pinchasik BE
    ACS Appl Mater Interfaces; 2022 Feb; 14(7):9855-9863. PubMed ID: 35080367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-Assembly of Mesoscale Objects into Ordered Two-Dimensional Arrays.
    Bowden N; Terfort A; Carbeck J; Whitesides GM
    Science; 1997 Apr; 276(5310):233-5. PubMed ID: 9092466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Capillary forces between spherical particles floating at a liquid-liquid interface.
    Vassileva ND; van den Ende D; Mugele F; Mellema J
    Langmuir; 2005 Nov; 21(24):11190-200. PubMed ID: 16285790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stick-slip motion and controlled filling speed by the geometric design of soft micro-channels.
    Andersson J; Larsson A; Ström A
    J Colloid Interface Sci; 2018 Aug; 524():139-147. PubMed ID: 29649622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport and trapping of nanosheets via hydrodynamic forces and curvature-induced capillary quadrupolar interactions.
    Lee TJ; Lewallen CF; Bumbarger DJ; Yunker PJ; Reid RC; Forest CR
    J Colloid Interface Sci; 2018 Dec; 531():352-359. PubMed ID: 30041112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Switchable self-assembled capillary structures.
    Vandewalle N; Poty M; Vanesse N; Caprasse J; Defize T; Jérôme C
    Soft Matter; 2020 Dec; 16(45):10320-10325. PubMed ID: 33237110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-assembly of smart mesoscopic objects.
    Metzmacher J; Poty M; Lumay G; Vandewalle N
    Eur Phys J E Soft Matter; 2017 Dec; 40(12):108. PubMed ID: 29230563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards active microfluidics: Interface turbulence in thin liquid films with floating molecular machines.
    Alonso S; Mikhailov AS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 1):061906. PubMed ID: 19658523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrically mediated self-assembly and manipulation of drops at an interface.
    Kaneelil PR; de Souza JP; Turk G; Pahlavan AA; Stone HA
    Soft Matter; 2024 Jul; 20(27):5417-5424. PubMed ID: 38946480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dielectrowetting Control of Capillary Force (Cheerios Effect) between Floating Objects and Wall for Dielectric Fluid.
    Yuan J; Feng J; Cho SK
    Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33806827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical control of molecular machines at an air-water interface: manipulation of molecular pliers, paddles.
    Mori T
    Sci Technol Adv Mater; 2024; 25(1):2334667. PubMed ID: 38628979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunable capillary-induced attraction between vertical cylinders.
    Rieser JM; Arratia PE; Yodh AG; Gollub JP; Durian DJ
    Langmuir; 2015 Mar; 31(8):2421-9. PubMed ID: 25646573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pick up and release of micro-objects: a motion-free method to change the conformity of a capillary contact.
    Iazzolino A; Tourtit Y; Chafaï A; Gilet T; Lambert P; Tadrist L
    Soft Matter; 2020 Jan; 16(3):754-763. PubMed ID: 31830189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.