These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 36289402)
1. Taguchi grey relational optimization of sol-gel derived hydroxyapatite from a novel mix of two natural biowastes for biomedical applications. Osuchukwu OA; Salihi A; Abdullahi I; Obada DO Sci Rep; 2022 Oct; 12(1):17968. PubMed ID: 36289402 [TBL] [Abstract][Full Text] [Related]
2. A pedagogical approach for the development and optimization of a novel mix of biowastes-derived hydroxyapatite using the Box-Behnken experimental design. Osuchukwu OA; Salihi A; Abdullahi I; Abdulkareem B; Salami KA; Osayamen Etinosa P; Nwigbo SC; Mohammed SA; Obada DO Heliyon; 2024 Jan; 10(1):e23092. PubMed ID: 38187329 [TBL] [Abstract][Full Text] [Related]
3. Experimental data on the characterization of hydroxyapatite produced from a novel mixture of biowastes. Osuchukwu OA; Salihi A; Abdullahi I; Obada DO Data Brief; 2022 Jun; 42():108305. PubMed ID: 35664658 [TBL] [Abstract][Full Text] [Related]
4. Preparation and evaluation of cerium oxide-bovine hydroxyapatite composites for biomedical engineering applications. Gunduz O; Gode C; Ahmad Z; Gökçe H; Yetmez M; Kalkandelen C; Sahin YM; Oktar FN J Mech Behav Biomed Mater; 2014 Jul; 35():70-6. PubMed ID: 24747097 [TBL] [Abstract][Full Text] [Related]
5. Synthesis and Characterization of Natural Nano-hydroxyapatite Derived from Turkey Femur-Bone Waste. Esmaeilkhanian A; Sharifianjazi F; Abouchenari A; Rouhani A; Parvin N; Irani M Appl Biochem Biotechnol; 2019 Nov; 189(3):919-932. PubMed ID: 31144255 [TBL] [Abstract][Full Text] [Related]
6. Hydroxyapatite-TiO(2)-based nanocomposites synthesized in supercritical CO(2) for bone tissue engineering: physical and mechanical properties. Salarian M; Xu WZ; Wang Z; Sham TK; Charpentier PA ACS Appl Mater Interfaces; 2014 Oct; 6(19):16918-31. PubMed ID: 25184699 [TBL] [Abstract][Full Text] [Related]
7. Suitability evaluation of sol-gel derived Si-substituted hydroxyapatite for dental and maxillofacial applications through in vitro osteoblasts response. Balamurugan A; Rebelo AH; Lemos AF; Rocha JH; Ventura JM; Ferreira JM Dent Mater; 2008 Oct; 24(10):1374-80. PubMed ID: 18417203 [TBL] [Abstract][Full Text] [Related]
8. Novel route for rapid sol-gel synthesis of hydroxyapatite, avoiding ageing and using fast drying with a 50-fold to 200-fold reduction in process time. Ben-Arfa BA; Salvado IM; Ferreira JM; Pullar RC Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):796-804. PubMed ID: 27770957 [TBL] [Abstract][Full Text] [Related]
9. Spectroscopic investigations of nanohydroxyapatite powders synthesized by conventional and ultrasonic coupled sol-gel routes. Gopi D; Govindaraju KM; Victor CA; Kavitha L; Rajendiran N Spectrochim Acta A Mol Biomol Spectrosc; 2008 Oct; 70(5):1243-5. PubMed ID: 18356096 [TBL] [Abstract][Full Text] [Related]
10. Effect of sintering on the microstructural and mechanical properties of meleagris gallopova hydroxyapatite. Pazarlioglu SS; Gokce H; Ozyegin S; Salman S Biomed Mater Eng; 2014; 24(4):1751-69. PubMed ID: 24948459 [TBL] [Abstract][Full Text] [Related]
11. Low temperature method for the production of calcium phosphate fillers. Calafiori AR; Marotta M; Nastro A; Martino G Biomed Eng Online; 2004 Mar; 3(1):8. PubMed ID: 15035671 [TBL] [Abstract][Full Text] [Related]
12. Evolution of dynamics of physico-chemical and mechanical properties of hydroxyapatite with fluorine addition and degradation stability of new matrices. Erdem U; Dogan D; Bozer BM; Karaboga S; Turkoz MB; Metin AÜ; Yıldırım G J Mech Behav Biomed Mater; 2022 Nov; 135():105454. PubMed ID: 36115175 [TBL] [Abstract][Full Text] [Related]
13. Fabrication and characterization of an electrostatically bonded PEEK- hydroxyapatite composites for biomedical applications. Baştan FE J Biomed Mater Res B Appl Biomater; 2020 Aug; 108(6):2513-2527. PubMed ID: 32052943 [TBL] [Abstract][Full Text] [Related]
14. Hydrothermal synthesis of hydroxyapatite powders using Response Surface Methodology (RSM). Ebrahimi S; Stephen Sipaut Mohd Nasri C; Bin Arshad SE PLoS One; 2021; 16(5):e0251009. PubMed ID: 34014966 [TBL] [Abstract][Full Text] [Related]
15. Synthesis and characterization of Ce-substituted hydroxyapatite by sol-gel method. Kaygili O; Dorozhkin SV; Keser S Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():78-82. PubMed ID: 25063095 [TBL] [Abstract][Full Text] [Related]
16. One- and three-dimensional growth of hydroxyapatite nanowires during sol-gel-hydrothermal synthesis. Costa DO; Dixon SJ; Rizkalla AS ACS Appl Mater Interfaces; 2012 Mar; 4(3):1490-9. PubMed ID: 22296410 [TBL] [Abstract][Full Text] [Related]
17. Nano Hydroxyapatite for Biomedical Applications Derived from Chemical and Natural Sources by Simple Precipitation Method. Kalpana M; Nagalakshmi R Appl Biochem Biotechnol; 2023 Jun; 195(6):3994-4010. PubMed ID: 35596884 [TBL] [Abstract][Full Text] [Related]
18. Novel chelate-setting calcium-phosphate cements fabricated with wet-synthesized hydroxyapatite powder. Konishi T; Horiguchi Y; Mizumoto M; Honda M; Oribe K; Morisue H; Ishii K; Toyama Y; Matsumoto M; Aizawa M J Mater Sci Mater Med; 2013 Mar; 24(3):611-21. PubMed ID: 23229575 [TBL] [Abstract][Full Text] [Related]
19. Sintering effects of mullite-doping on mechanical properties of bovine hydroxyapatite. Yetmez M; Erkmen ZE; Kalkandelen C; Ficai A; Oktar FN Mater Sci Eng C Mater Biol Appl; 2017 Aug; 77():470-475. PubMed ID: 28532054 [TBL] [Abstract][Full Text] [Related]
20. Effect of hydroxyapatite particle size, morphology and crystallinity on proliferation of colon cancer HCT116 cells. Dey S; Das M; Balla VK Mater Sci Eng C Mater Biol Appl; 2014 Jun; 39():336-9. PubMed ID: 24863233 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]