These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 36289441)

  • 1. Optimising expression of the large dynamic range FRET pair mNeonGreen and superfolder mTurquoise2
    Mertens LMY; den Blaauwen T
    Sci Rep; 2022 Oct; 12(1):17977. PubMed ID: 36289441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superfolder mTurquoise2
    Meiresonne NY; Consoli E; Mertens LMY; Chertkova AO; Goedhart J; den Blaauwen T
    Mol Microbiol; 2019 Apr; 111(4):1025-1038. PubMed ID: 30648295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of
    Meiresonne NY; Consoli E; Mertens LMY; den Blaauwen T
    Bio Protoc; 2019 Dec; 9(23):e3448. PubMed ID: 33654943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of a spectrally diverse set of fluorescent proteins as FRET acceptors for mTurquoise2.
    Mastop M; Bindels DS; Shaner NC; Postma M; Gadella TWJ; Goedhart J
    Sci Rep; 2017 Sep; 7(1):11999. PubMed ID: 28931898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparing the performance of mScarlet-I, mRuby3, and mCherry as FRET acceptors for mNeonGreen.
    McCullock TW; MacLean DM; Kammermeier PJ
    PLoS One; 2020; 15(2):e0219886. PubMed ID: 32023253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of mNeonGreen for Homo sapiens increases its fluorescent intensity in mammalian cells.
    Tanida-Miyake E; Koike M; Uchiyama Y; Tanida I
    PLoS One; 2018; 13(1):e0191108. PubMed ID: 29342181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expanding the Cell-Free Reporter Protein Toolbox by Employing a Split mNeonGreen System to Reduce Protein Synthesis Workload.
    Copeland CE; Heitmeier CJ; Doan KD; Lee SC; Porche KB; Kwon YC
    ACS Synth Biol; 2024 Jun; 13(6):1663-1668. PubMed ID: 38836603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence resonance energy transfer of GFP and YFP by spectral imaging and quantitative acceptor photobleaching.
    Dinant C; van Royen ME; Vermeulen W; Houtsmuller AB
    J Microsc; 2008 Jul; 231(Pt 1):97-104. PubMed ID: 18638193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Bright Fluorescent Protein mNeonGreen Facilitates Protein Expression Analysis
    Hostettler L; Grundy L; Käser-Pébernard S; Wicky C; Schafer WR; Glauser DA
    G3 (Bethesda); 2017 Feb; 7(2):607-615. PubMed ID: 28108553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FRET-based in vivo screening for protein folding and increased protein stability.
    Philipps B; Hennecke J; Glockshuber R
    J Mol Biol; 2003 Mar; 327(1):239-49. PubMed ID: 12614622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a high-dynamic range, GFP-based FRET probe sensitive to oxidative microenvironments.
    Kolossov VL; Spring BQ; Clegg RM; Henry JJ; Sokolowski A; Kenis PJ; Gaskins HR
    Exp Biol Med (Maywood); 2011 Jun; 236(6):681-91. PubMed ID: 21606117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Infrared Fluorescent Protein iRFP as an Acceptor for Förster Resonance Energy Transfer].
    Zlobovskaya OA; Sarkisyan KS; Lukyanov KA
    Bioorg Khim; 2015; 41(3):299-304. PubMed ID: 26502606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ratiometric fluorescent pH nanoprobes based on in situ assembling of fluorescence resonance energy transfer between fluorescent proteins.
    Yu H; Chen C; Cao X; Liu Y; Zhou S; Wang P
    Anal Bioanal Chem; 2017 Aug; 409(21):5073-5080. PubMed ID: 28687887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accepting from the best donor; analysis of long-lifetime donor fluorescent protein pairings to optimise dynamic FLIM-based FRET experiments.
    Martin KJ; McGhee EJ; Schwarz JP; Drysdale M; Brachmann SM; Stucke V; Sansom OJ; Anderson KI
    PLoS One; 2018; 13(1):e0183585. PubMed ID: 29293509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Directed evolution study unveiling key sequence factors that affect translation efficiency in Escherichia coli.
    Tsukuda M; Miyazaki K
    J Biosci Bioeng; 2013 Nov; 116(5):540-5. PubMed ID: 23790548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetically-encoded nanosensor for quantitative monitoring of methionine in bacterial and yeast cells.
    Mohsin M; Ahmad A
    Biosens Bioelectron; 2014 Sep; 59():358-64. PubMed ID: 24752146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescent protein-based FRET sensor for intracellular monitoring of redox status in bacteria at single cell level.
    Abraham BG; Santala V; Tkachenko NV; Karp M
    Anal Bioanal Chem; 2014 Nov; 406(28):7195-204. PubMed ID: 25224640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oligomeric sensor kinase DcuS in the membrane of Escherichia coli and in proteoliposomes: chemical cross-linking and FRET spectroscopy.
    Scheu PD; Liao YF; Bauer J; Kneuper H; Basché T; Unden G; Erker W
    J Bacteriol; 2010 Jul; 192(13):3474-83. PubMed ID: 20453099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolutionary optimization of fluorescent proteins for intracellular FRET.
    Nguyen AW; Daugherty PS
    Nat Biotechnol; 2005 Mar; 23(3):355-60. PubMed ID: 15696158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Unique Genetically Encoded FRET Pair in Mammalian Cells.
    Mitchell AL; Addy PS; Chin MA; Chatterjee A
    Chembiochem; 2017 Mar; 18(6):511-514. PubMed ID: 28093840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.