These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 36289480)

  • 1. BoostMEC: predicting CRISPR-Cas9 cleavage efficiency through boosting models.
    Zarate OA; Yang Y; Wang X; Wang JP
    BMC Bioinformatics; 2022 Oct; 23(1):446. PubMed ID: 36289480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A fusion framework of deep learning and machine learning for predicting sgRNA cleavage efficiency.
    Liu Y; Fan R; Yi J; Cui Q; Cui C
    Comput Biol Med; 2023 Oct; 165():107476. PubMed ID: 37696181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TransCrispr: Transformer Based Hybrid Model for Predicting CRISPR/Cas9 Single Guide RNA Cleavage Efficiency.
    Wan Y; Jiang Z
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(2):1518-1528. PubMed ID: 36006888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using traditional machine learning and deep learning methods for on- and off-target prediction in CRISPR/Cas9: a review.
    Sherkatghanad Z; Abdar M; Charlier J; Makarenkov V
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37080758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CNN-XG: A Hybrid Framework for sgRNA On-Target Prediction.
    Li B; Ai D; Liu X
    Biomolecules; 2022 Mar; 12(3):. PubMed ID: 35327601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CrnnCrispr: An Interpretable Deep Learning Method for CRISPR/Cas9 sgRNA On-Target Activity Prediction.
    Zhu W; Xie H; Chen Y; Zhang G
    Int J Mol Sci; 2024 Apr; 25(8):. PubMed ID: 38674012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved sgRNA design in bacteria via genome-wide activity profiling.
    Guo J; Wang T; Guan C; Liu B; Luo C; Xie Z; Zhang C; Xing XH
    Nucleic Acids Res; 2018 Aug; 46(14):7052-7069. PubMed ID: 29982721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A generalizable Cas9/sgRNA prediction model using machine transfer learning with small high-quality datasets.
    Ham DT; Browne TS; Banglorewala PN; Wilson TL; Michael RK; Gloor GB; Edgell DR
    Nat Commun; 2023 Sep; 14(1):5514. PubMed ID: 37679324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A machine learning approach for predicting CRISPR-Cas9 cleavage efficiencies and patterns underlying its mechanism of action.
    Abadi S; Yan WX; Amar D; Mayrose I
    PLoS Comput Biol; 2017 Oct; 13(10):e1005807. PubMed ID: 29036168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of CRISPR/Cas9 single guide RNA cleavage efficiency and specificity by attention-based convolutional neural networks.
    Zhang G; Zeng T; Dai Z; Dai X
    Comput Struct Biotechnol J; 2021; 19():1445-1457. PubMed ID: 33841753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPRlnc: a machine learning method for lncRNA-specific single-guide RNA design of CRISPR/Cas9 system.
    Yang Z; Zhang Z; Li J; Chen W; Liu C
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38426328
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequence features associated with the cleavage efficiency of CRISPR/Cas9 system.
    Liu X; Homma A; Sayadi J; Yang S; Ohashi J; Takumi T
    Sci Rep; 2016 Jan; 6():19675. PubMed ID: 26813419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Natural Nucleoside Modifications in Guide RNAs Can Modulate the Activity of the CRISPR-Cas9 System
    Prokhorova DV; Vokhtantsev IP; Tolstova PO; Zhuravlev ES; Kulishova LM; Zharkov DO; Stepanov GA
    CRISPR J; 2022 Dec; 5(6):799-812. PubMed ID: 36350691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Benchmarking deep learning methods for predicting CRISPR/Cas9 sgRNA on- and off-target activities.
    Zhang G; Luo Y; Dai X; Dai Z
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37775147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DeepCRISTL: deep transfer learning to predict CRISPR/Cas9 functional and endogenous on-target editing efficiency.
    Elkayam S; Orenstein Y
    Bioinformatics; 2022 Jun; 38(Suppl 1):i161-i168. PubMed ID: 35758815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AttCRISPR: a spacetime interpretable model for prediction of sgRNA on-target activity.
    Xiao LM; Wan YQ; Jiang ZR
    BMC Bioinformatics; 2021 Dec; 22(1):589. PubMed ID: 34903170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Application of machine learning in the CRISPR/Cas9 system].
    Zhang GS; Yang Y; Zhang LM; Dai XH
    Yi Chuan; 2018 Sep; 40(9):704-723. PubMed ID: 30369475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum biological insights into CRISPR-Cas9 sgRNA efficiency from explainable-AI driven feature engineering.
    Noshay JM; Walker T; Alexander WG; Klingeman DM; Romero J; Walker AM; Prates E; Eckert C; Irle S; Kainer D; Jacobson DA
    Nucleic Acids Res; 2023 Oct; 51(19):10147-10161. PubMed ID: 37738140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DeepCRISTL: deep transfer learning to predict CRISPR/Cas9 on-target editing efficiency in specific cellular contexts.
    Elkayam S; Tziony I; Orenstein Y
    Bioinformatics; 2024 Aug; 40(8):. PubMed ID: 39073893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of sgRNA on-target activity in bacteria by deep learning.
    Wang L; Zhang J
    BMC Bioinformatics; 2019 Oct; 20(1):517. PubMed ID: 31651233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.