These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 36289480)

  • 21. Deep learning improves the ability of sgRNA off-target propensity prediction.
    Liu Q; Cheng X; Liu G; Li B; Liu X
    BMC Bioinformatics; 2020 Feb; 21(1):51. PubMed ID: 32041517
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CRISPRpred(SEQ): a sequence-based method for sgRNA on target activity prediction using traditional machine learning.
    Muhammad Rafid AH; Toufikuzzaman M; Rahman MS; Rahman MS
    BMC Bioinformatics; 2020 Jun; 21(1):223. PubMed ID: 32487025
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Single Molecule FRET Analysis of CRISPR Cas9 Single Guide RNA Folding Dynamics.
    Okafor IC; Ha T
    J Phys Chem B; 2023 Jan; 127(1):45-51. PubMed ID: 36563314
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Scaffold-mediated non-viral delivery platform for CRISPR/Cas9-based genome editing.
    Chin JS; Chooi WH; Wang H; Ong W; Leong KW; Chew SY
    Acta Biomater; 2019 May; 90():60-70. PubMed ID: 30978509
    [TBL] [Abstract][Full Text] [Related]  

  • 25. General guidelines for CRISPR/Cas-based genome editing in plants.
    Aksoy E; Yildirim K; Kavas M; Kayihan C; Yerlikaya BA; Çalik I; Sevgen İ; Demirel U
    Mol Biol Rep; 2022 Dec; 49(12):12151-12164. PubMed ID: 36107373
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CRISPRpred: A flexible and efficient tool for sgRNAs on-target activity prediction in CRISPR/Cas9 systems.
    Rahman MK; Rahman MS
    PLoS One; 2017; 12(8):e0181943. PubMed ID: 28767689
    [TBL] [Abstract][Full Text] [Related]  

  • 27. ExsgRNA: reduce off-target efficiency by on-target mismatched sgRNA.
    Hu WX; Rong Y; Guo Y; Jiang F; Tian W; Chen H; Dong SS; Yang TL
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35580855
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CRISPR/Cas9 cleavage efficiency regression through boosting algorithms and Markov sequence profiling.
    Peng H; Zheng Y; Blumenstein M; Tao D; Li J
    Bioinformatics; 2018 Sep; 34(18):3069-3077. PubMed ID: 29672669
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prediction of sgRNA Off-Target Activity in CRISPR/Cas9 Gene Editing Using Graph Convolution Network.
    Vinodkumar PK; Ozcinar C; Anbarjafari G
    Entropy (Basel); 2021 May; 23(5):. PubMed ID: 34069050
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interpretable CRISPR/Cas9 off-target activities with mismatches and indels prediction using BERT.
    Luo Y; Chen Y; Xie H; Zhu W; Zhang G
    Comput Biol Med; 2024 Feb; 169():107932. PubMed ID: 38199209
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optimisation of the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 : single-guide RNA (sgRNA) delivery system in a goat model.
    Huang Y; Ding Y; Liu Y; Zhou S; Ding Q; Yan H; Ma B; Zhao X; Wang X; Chen Y
    Reprod Fertil Dev; 2019 Aug; 31(9):1533-1537. PubMed ID: 31079595
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of Family-Specific Features in Cas9 and Cas12 Proteins: A Machine Learning Approach Using Complete Protein Feature Spectrum.
    Madugula SS; Pujar P; Nammi B; Wang S; Jayasinghe-Arachchige VM; Pham T; Mashburn D; Artiles M; Liu J
    J Chem Inf Model; 2024 Jun; 64(12):4897-4911. PubMed ID: 38838358
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dramatic Improvement of CRISPR/Cas9 Editing in
    Ng H; Dean N
    mSphere; 2017; 2(2):. PubMed ID: 28435892
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improving Stability and Specificity of CRISPR/Cas9 System by Selective Modification of Guide RNAs with 2'-fluoro and Locked Nucleic Acid Nucleotides.
    Sakovina L; Vokhtantsev I; Vorobyeva M; Vorobyev P; Novopashina D
    Int J Mol Sci; 2022 Nov; 23(21):. PubMed ID: 36362256
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CRISPR-Cas9-mediated pinpoint microbial genome editing aided by target-mismatched sgRNAs.
    Lee HJ; Kim HJ; Lee SJ
    Genome Res; 2020 May; 30(5):768-775. PubMed ID: 32327447
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CRISPR-Cas9 recognition of enzymatically synthesized base-modified nucleic acids.
    Yang H; Eremeeva E; Abramov M; Jacquemyn M; Groaz E; Daelemans D; Herdewijn P
    Nucleic Acids Res; 2023 Feb; 51(4):1501-1511. PubMed ID: 36611237
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Utilizing directed evolution to interrogate and optimize CRISPR/Cas guide RNA scaffolds.
    Bush K; Corsi GI; Yan AC; Haynes K; Layzer JM; Zhou JH; Llanga T; Gorodkin J; Sullenger BA
    Cell Chem Biol; 2023 Aug; 30(8):879-892.e5. PubMed ID: 37390831
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of efficiency prediction algorithms and development of ensemble model for CRISPR/Cas9 gRNA selection.
    Chen Y; Wang X
    Bioinformatics; 2022 Nov; 38(23):5175-5181. PubMed ID: 36227031
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Factors affecting the cleavage efficiency of the CRISPR-Cas9 system.
    Jung WJ; Park SJ; Cha S; Kim K
    Anim Cells Syst (Seoul); 2024; 28(1):75-83. PubMed ID: 38440123
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CRISPR-M: Predicting sgRNA off-target effect using a multi-view deep learning network.
    Sun J; Guo J; Liu J
    PLoS Comput Biol; 2024 Mar; 20(3):e1011972. PubMed ID: 38483980
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.