BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 36289976)

  • 1. Virtual Screening for SARS-CoV-2 Main Protease Inhibitory Peptides from the Putative Hydrolyzed Peptidome of Rice Bran.
    Harnkit N; Khongsonthi T; Masuwan N; Prasartkul P; Noikaew T; Chumnanpuen P
    Antibiotics (Basel); 2022 Sep; 11(10):. PubMed ID: 36289976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computer-Aided Screening for Potential Coronavirus 3-Chymotrypsin-like Protease (3CLpro) Inhibitory Peptides from Putative Hemp Seed Trypsinized Peptidome.
    Prasertsuk K; Prongfa K; Suttiwanich P; Harnkit N; Sangkhawasi M; Promta P; Chumnanpuen P
    Molecules; 2022 Dec; 28(1):. PubMed ID: 36615263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of natural antimicrobial peptides mimetic to inhibit Ca
    Asseri AH; Islam MR; Alghamdi RM; Altayb HN
    J Bioenerg Biomembr; 2024 Apr; 56(2):125-139. PubMed ID: 38095733
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Maurya AK; Mishra N
    J Biomol Struct Dyn; 2021 Nov; 39(18):7306-7321. PubMed ID: 32835632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of new anti-nCoV drug chemical compounds from Indian spices exploiting SARS-CoV-2 main protease as target.
    Kundu D; Selvaraj C; Singh SK; Dubey VK
    J Biomol Struct Dyn; 2021 Jun; 39(9):3428-3434. PubMed ID: 32362243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Potential Peptide From Soy Cheese Produced Using
    Chourasia R; Padhi S; Chiring Phukon L; Abedin MM; Singh SP; Rai AK
    Front Mol Biosci; 2020; 7():601753. PubMed ID: 33363209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Development of antiviral drugs based on inhibitors of the SARS-COV-2 main protease].
    Sulimov AV; Shikhaliev KS; Pyankov OV; Shcherbakov DN; Chirkova VY; Ilin IS; Kutov DC; Tashchilova AS; Krysin MY; Krylskiy DV; Stolpovskaya NV; Volosnikova EA; Belenkaya SV; Sulimov VB
    Biomed Khim; 2021 May; 67(3):259-267. PubMed ID: 34142533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Binding Mechanism and Pharmacology Comparative Analysis of Noscapine for Repurposing against SARS-CoV-2 Protease.
    Kumar N; Sood D; van der Spek PJ; Sharma HS; Chandra R
    J Proteome Res; 2020 Nov; 19(11):4678-4689. PubMed ID: 32786685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In silico prediction of potential inhibitors for the main protease of SARS-CoV-2 using molecular docking and dynamics simulation based drug-repurposing.
    Kumar Y; Singh H; Patel CN
    J Infect Public Health; 2020 Sep; 13(9):1210-1223. PubMed ID: 32561274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure-based lead optimization of herbal medicine rutin for inhibiting SARS-CoV-2's main protease.
    Huynh T; Wang H; Luan B
    Phys Chem Chem Phys; 2020 Nov; 22(43):25335-25343. PubMed ID: 33140777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Silico Identification of Multi-target Anti-SARS-CoV-2 Peptides from Quinoa Seed Proteins.
    Wong FC; Ong JH; Kumar DT; Chai TT
    Int J Pept Res Ther; 2021; 27(3):1837-1847. PubMed ID: 33867899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting the Dimerization of the Main Protease of Coronaviruses: A Potential Broad-Spectrum Therapeutic Strategy.
    Goyal B; Goyal D
    ACS Comb Sci; 2020 Jun; 22(6):297-305. PubMed ID: 32402186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Repurposing of FDA-approved drugs as potential inhibitors of the SARS-CoV-2 main protease: Molecular insights into improved therapeutic discovery.
    Ray AK; Sen Gupta PS; Panda SK; Biswal S; Bhattacharya U; Rana MK
    Comput Biol Med; 2022 Mar; 142():105183. PubMed ID: 34986429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phenylbenzopyrone of Flavonoids as a Potential Scaffold to Prevent SARSCoV-2 Replication by Inhibiting its M
    Potshangbam AM; Nongdam P; Kumar AK; Rathore RS
    Curr Pharm Biotechnol; 2021; 22(15):2054-2070. PubMed ID: 33504301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational screening of dual inhibitors from FDA approved antiviral drugs on SARS-CoV-2 spike protein and the main protease using molecular docking approach.
    Sabarimurugan S; Purushothaman I; Swaminathan R; Dharmarajan A; Warrier S; Kothandan S
    Acta Virol; 2021; 65(2):160-172. PubMed ID: 34130467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting COVID-19 (SARS-CoV-2) main protease through active phytochemicals of ayurvedic medicinal plants -
    Shree P; Mishra P; Selvaraj C; Singh SK; Chaube R; Garg N; Tripathi YB
    J Biomol Struct Dyn; 2022 Jan; 40(1):190-203. PubMed ID: 32851919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a simple and miniaturized sandwich-like fluorescence polarization assay for rapid screening of SARS-CoV-2 main protease inhibitors.
    Yan G; Li D; Lin Y; Fu Z; Qi H; Liu X; Zhang J; Si S; Chen Y
    Cell Biosci; 2021 Dec; 11(1):199. PubMed ID: 34865653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In silico identification of potential inhibitors of key SARS-CoV-2 3CL hydrolase (Mpro) via molecular docking, MMGBSA predictive binding energy calculations, and molecular dynamics simulation.
    Choudhary MI; Shaikh M; Tul-Wahab A; Ur-Rahman A
    PLoS One; 2020; 15(7):e0235030. PubMed ID: 32706783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of bioactive molecules from tea plant as SARS-CoV-2 main protease inhibitors.
    Bhardwaj VK; Singh R; Sharma J; Rajendran V; Purohit R; Kumar S
    J Biomol Struct Dyn; 2021 Jul; 39(10):3449-3458. PubMed ID: 32397940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of the Binding Affinity of Anti-Viral Drugs against Main Protease of SARS-CoV-2 Through a Molecular Docking Study.
    Mondal M; Sarkar C; Jamaddar S; Khalipha ABR; Islam MT; Mahafzah A; Mubarak MS
    Infect Disord Drug Targets; 2021; 21(7):e160921188777. PubMed ID: 33292147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.