These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 36290377)
1. Nanofibrous Hydrogel Nanocomposite Based on Strontium-Doped Bioglass Nanofibers for Bone Tissue Engineering Applications. Zare S; Mohammadpour M; Izadi Z; Ghazanfari S; Nadri S; Samadian H Biology (Basel); 2022 Oct; 11(10):. PubMed ID: 36290377 [TBL] [Abstract][Full Text] [Related]
2. Strontium doped bioglass incorporated hydrogel-based scaffold for amplified bone tissue regeneration. Manoochehri H; Ghorbani M; Moosazadeh Moghaddam M; Nourani MR; Makvandi P; Sharifi E Sci Rep; 2022 Jun; 12(1):10160. PubMed ID: 35715472 [TBL] [Abstract][Full Text] [Related]
3. Alginate-Sr/Mg Containing Bioactive Glass Scaffolds: The Characterization of a New 3D Composite for Bone Tissue Engineering. Guagnini B; Medagli B; Zumbo B; Cannillo V; Turco G; Porrelli D; Bellucci D J Funct Biomater; 2024 Jul; 15(7):. PubMed ID: 39057304 [TBL] [Abstract][Full Text] [Related]
4. Zinc and Strontium-Substituted Bioactive Glass Nanoparticle/Alginate Composites Scaffold for Bone Regeneration. Naruphontjirakul P; Panpisut P; Patntirapong S Int J Mol Sci; 2023 Mar; 24(7):. PubMed ID: 37047122 [TBL] [Abstract][Full Text] [Related]
5. Multiple and Promising Applications of Strontium (Sr)-Containing Bioactive Glasses in Bone Tissue Engineering. Kargozar S; Montazerian M; Fiume E; Baino F Front Bioeng Biotechnol; 2019; 7():161. PubMed ID: 31334228 [TBL] [Abstract][Full Text] [Related]
6. Bacterial Polyglucuronic Acid/Alginate/Carbon Nanofibers Hydrogel Nanocomposite as a Potential Scaffold for Bone Tissue Engineering. Dibazar ZE; Mohammadpour M; Samadian H; Zare S; Azizi M; Hamidi M; Elboutachfaiti R; Petit E; Delattre C Materials (Basel); 2022 Mar; 15(7):. PubMed ID: 35407826 [TBL] [Abstract][Full Text] [Related]
7. Effects of strontium ions with potential antibacterial activity on in vivo bone regeneration. Baheiraei N; Eyni H; Bakhshi B; Najafloo R; Rabiee N Sci Rep; 2021 Apr; 11(1):8745. PubMed ID: 33888790 [TBL] [Abstract][Full Text] [Related]
8. Biomimetic PLGA/Strontium-Zinc Nano Hydroxyapatite Composite Scaffolds for Bone Regeneration. Hassan M; Sulaiman M; Yuvaraju PD; Galiwango E; Rehman IU; Al-Marzouqi AH; Khaleel A; Mohsin S J Funct Biomater; 2022 Jan; 13(1):. PubMed ID: 35225976 [TBL] [Abstract][Full Text] [Related]
9. 3D interconnected porous PMMA scaffold integrating with advanced nanostructured CaP-based biomaterials for rapid bone repair and regeneration. Elakkiya K; Bargavi P; Balakumar S J Mech Behav Biomed Mater; 2023 Nov; 147():106106. PubMed ID: 37708780 [TBL] [Abstract][Full Text] [Related]
10. Electrospun polylactic acid scaffolds with strontium- and cobalt-doped bioglass for potential use in bone tissue engineering applications. de Souza JR; Kukulka EC; Araújo JCR; Campos TMB; do Prado RF; de Vasconcellos LMR; Thin GP; Borges ALS J Biomed Mater Res B Appl Biomater; 2023 Jan; 111(1):151-160. PubMed ID: 35950464 [TBL] [Abstract][Full Text] [Related]
11. [In vitro study on injectable alginate-strontium hydrogel for bone tissue engineering]. Tu Y; Wu T; Ye A; Xu J; Guo F; Cheng X Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 Dec; 27(12):1499-505. PubMed ID: 24640374 [TBL] [Abstract][Full Text] [Related]
12. Effects of cerium-doped bioactive glass incorporation on an alginate/gelatin scaffold for bone tissue engineering: In vitro characterizations. Mostajeran H; Baheiraei N; Bagheri H Int J Biol Macromol; 2024 Jan; 255():128094. PubMed ID: 37977466 [TBL] [Abstract][Full Text] [Related]
13. The facile synthesis and bioactivity of a 3D nanofibrous bioglass scaffold using an amino-modified bacterial cellulose template. Wen C; Hong Y; Wu J; Luo L; Qiu Y; Ye J RSC Adv; 2018 Apr; 8(26):14561-14569. PubMed ID: 35540791 [TBL] [Abstract][Full Text] [Related]
14. Electrophoretic processing of chitosan based composite scaffolds with Nb-doped bioactive glass for bone tissue regeneration. Bonetti L; Altomare L; Bono N; Panno E; Campiglio CE; Draghi L; Candiani G; Farè S; Boccaccini AR; De Nardo L J Mater Sci Mater Med; 2020 May; 31(5):43. PubMed ID: 32358696 [TBL] [Abstract][Full Text] [Related]
15. Mg-Sr-Ca containing bioactive glass nanoparticles hydrogel modified mineralized collagen scaffold for bone repair. Sun Y; Shi M; Niu B; Xu X; Xia W; Deng C J Biomater Appl; 2024 Aug; 39(2):117-128. PubMed ID: 38775351 [TBL] [Abstract][Full Text] [Related]
16. Fabrication and characterization of strontium incorporated 3-D bioactive glass scaffolds for bone tissue from biosilica. Özarslan AC; Yücel S Mater Sci Eng C Mater Biol Appl; 2016 Nov; 68():350-357. PubMed ID: 27524030 [TBL] [Abstract][Full Text] [Related]
17. Sr-HA scaffolds fabricated by SPS technology promote the repair of segmental bone defects. Hu B; Meng ZD; Zhang YQ; Ye LY; Wang CJ; Guo WC Tissue Cell; 2020 Oct; 66():101386. PubMed ID: 32933709 [TBL] [Abstract][Full Text] [Related]
18. Biological evaluation of porous nanocomposite scaffolds based on strontium substituted β-TCP and bioactive glass: An in vitro and in vivo study. Kazemi M; Dehghan MM; Azami M Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110071. PubMed ID: 31546377 [TBL] [Abstract][Full Text] [Related]