These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

367 related articles for article (PubMed ID: 36291091)

  • 61. Telomeres and DNA double-strand breaks: ever the twain shall meet?
    Bailey SM; Cornforth MN
    Cell Mol Life Sci; 2007 Nov; 64(22):2956-64. PubMed ID: 17876526
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Phosphatase-dependent fluctuations in DNA-damage checkpoint activation at partially defective telomeres.
    Miura A; Matsuura A
    Biochem Biophys Res Commun; 2019 Aug; 516(1):133-137. PubMed ID: 31202459
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Two routes to senescence revealed by real-time analysis of telomerase-negative single lineages.
    Xu Z; Fallet E; Paoletti C; Fehrmann S; Charvin G; Teixeira MT
    Nat Commun; 2015 Jul; 6():7680. PubMed ID: 26158780
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Multiple pathways suppress telomere addition to DNA breaks in the Drosophila germline.
    Beaucher M; Zheng XF; Amariei F; Rong YS
    Genetics; 2012 Jun; 191(2):407-17. PubMed ID: 22446318
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Cdc13 and telomerase bind through different mechanisms at the lagging- and leading-strand telomeres.
    Faure V; Coulon S; Hardy J; Géli V
    Mol Cell; 2010 Jun; 38(6):842-52. PubMed ID: 20620955
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Asymmetric Processing of DNA Ends at a Double-Strand Break Leads to Unconstrained Dynamics and Ectopic Translocation.
    Marcomini I; Shimada K; Delgoshaie N; Yamamoto I; Seeber A; Cheblal A; Horigome C; Naumann U; Gasser SM
    Cell Rep; 2018 Sep; 24(10):2614-2628.e4. PubMed ID: 30184497
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A subtelomeric region affects telomerase-negative replicative senescence in Saccharomyces cerevisiae.
    Jolivet P; Serhal K; Graf M; Eberhard S; Xu Z; Luke B; Teixeira MT
    Sci Rep; 2019 Feb; 9(1):1845. PubMed ID: 30755624
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Alternative lengthening of human telomeres is a conservative DNA replication process with features of break-induced replication.
    Roumelioti FM; Sotiriou SK; Katsini V; Chiourea M; Halazonetis TD; Gagos S
    EMBO Rep; 2016 Dec; 17(12):1731-1737. PubMed ID: 27760777
    [TBL] [Abstract][Full Text] [Related]  

  • 69. PIF1 disruption or NBS1 hypomorphism does not affect chromosome healing or fusion resulting from double-strand breaks near telomeres in murine embryonic stem cells.
    Reynolds GE; Gao Q; Miller D; Snow BE; Harrington LA; Murnane JP
    DNA Repair (Amst); 2011 Nov; 10(11):1164-73. PubMed ID: 21945094
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Cytogenetic Analysis of Telomere Dysfunction.
    Rai R; Multani AS; Chang S
    Methods Mol Biol; 2017; 1587():127-131. PubMed ID: 28324504
    [TBL] [Abstract][Full Text] [Related]  

  • 71. NEJ1 prevents NHEJ-dependent telomere fusions in yeast without telomerase.
    Liti G; Louis EJ
    Mol Cell; 2003 May; 11(5):1373-8. PubMed ID: 12769859
    [TBL] [Abstract][Full Text] [Related]  

  • 72. CDK phosphorylation of TRF2 controls t-loop dynamics during the cell cycle.
    Sarek G; Kotsantis P; Ruis P; Van Ly D; Margalef P; Borel V; Zheng XF; Flynn HR; Snijders AP; Chowdhury D; Cesare AJ; Boulton SJ
    Nature; 2019 Nov; 575(7783):523-527. PubMed ID: 31723267
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Multiple genetic pathways regulate replicative senescence in telomerase-deficient yeast.
    Ballew BJ; Lundblad V
    Aging Cell; 2013 Aug; 12(4):719-27. PubMed ID: 23672410
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The Rap1p-telomere complex does not determine the replicative capacity of telomerase-deficient yeast.
    Smolikov S; Krauskopf A
    Mol Cell Biol; 2003 Dec; 23(23):8729-39. PubMed ID: 14612413
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Related mechanisms for end processing at telomeres and DNA double-strand breaks.
    Iglesias N; Lingner J
    Mol Cell; 2009 Jul; 35(2):137-8. PubMed ID: 19647509
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Telomeric 3'-overhang length is associated with the size of telomeres.
    Rahman R; Forsyth NR; Cui W
    Exp Gerontol; 2008 Apr; 43(4):258-65. PubMed ID: 18280685
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Finding the end: recruitment of telomerase to telomeres.
    Nandakumar J; Cech TR
    Nat Rev Mol Cell Biol; 2013 Feb; 14(2):69-82. PubMed ID: 23299958
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Dna2 is involved in CA strand resection and nascent lagging strand completion at native yeast telomeres.
    Budd ME; Campbell JL
    J Biol Chem; 2013 Oct; 288(41):29414-29. PubMed ID: 23963457
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Characterization of the telomerase modulating activities of yeast DNA helicases.
    Nickens DG; Bochman ML
    Methods Enzymol; 2021; 661():327-342. PubMed ID: 34776218
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Yeast telomerase and the SUN domain protein Mps3 anchor telomeres and repress subtelomeric recombination.
    Schober H; Ferreira H; Kalck V; Gehlen LR; Gasser SM
    Genes Dev; 2009 Apr; 23(8):928-38. PubMed ID: 19390087
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.