BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 36291719)

  • 1. The Effect of Positive Charge Distribution on the Cryoprotective Activity of Dehydrins.
    Smith MA; Graether SP
    Biomolecules; 2022 Oct; 12(10):. PubMed ID: 36291719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequence composition versus sequence order in the cryoprotective function of an intrinsically disordered stress-response protein.
    Palmer SR; De Villa R; Graether SP
    Protein Sci; 2019 Aug; 28(8):1448-1459. PubMed ID: 31102309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cryoprotective activity of Arabidopsis KS-type dehydrin depends on the hydrophobic amino acids of two active segments.
    Yokoyama T; Ohkubo T; Kamiya K; Hara M
    Arch Biochem Biophys; 2020 Sep; 691():108510. PubMed ID: 32735864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Disordered Dehydrin and Its Role in Plant Protection: A Biochemical Perspective.
    Smith MA; Graether SP
    Biomolecules; 2022 Feb; 12(2):. PubMed ID: 35204794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and Functional Insights into the Cryoprotection of Membranes by the Intrinsically Disordered Dehydrins.
    Clarke MW; Boddington KF; Warnica JM; Atkinson J; McKenna S; Madge J; Barker CH; Graether SP
    J Biol Chem; 2015 Nov; 290(45):26900-26913. PubMed ID: 26370084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The importance of size and disorder in the cryoprotective effects of dehydrins.
    Hughes SL; Schart V; Malcolmson J; Hogarth KA; Martynowicz DM; Tralman-Baker E; Patel SN; Graether SP
    Plant Physiol; 2013 Nov; 163(3):1376-86. PubMed ID: 24047864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of hydrophobic amino acids of K-segments in the cryoprotection of lactate dehydrogenase by dehydrins.
    Hara M; Endo T; Kamiya K; Kameyama A
    J Plant Physiol; 2017 Mar; 210():18-23. PubMed ID: 28040625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of cryoaggregation of phospholipid liposomes by an Arabidopsis intrinsically disordered dehydrin and its K-segment.
    Kimura Y; Ohkubo T; Shimizu K; Magata Y; Park EY; Hara M
    Colloids Surf B Biointerfaces; 2022 Mar; 211():112286. PubMed ID: 34929484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discovery of Cryoprotective Activity in Human Genome-Derived Intrinsically Disordered Proteins.
    Matsuo N; Goda N; Shimizu K; Fukuchi S; Ota M; Hiroaki H
    Int J Mol Sci; 2018 Jan; 19(2):. PubMed ID: 29385704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cryoprotective mechanism of a small intrinsically disordered dehydrin protein.
    Hughes S; Graether SP
    Protein Sci; 2011 Jan; 20(1):42-50. PubMed ID: 21031484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disorder and function: a review of the dehydrin protein family.
    Graether SP; Boddington KF
    Front Plant Sci; 2014; 5():576. PubMed ID: 25400646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. F-segments of Arabidopsis dehydrins show cryoprotective activities for lactate dehydrogenase depending on the hydrophobic residues.
    Ohkubo T; Kameyama A; Kamiya K; Kondo M; Hara M
    Phytochemistry; 2020 May; 173():112300. PubMed ID: 32087435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The cationic nature of lysine-rich segments modulates the structural and biochemical properties of wild potato FSK
    Szabała BM
    Plant Physiol Biochem; 2023 Jan; 194():480-488. PubMed ID: 36512982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and Functional Dynamics of Dehydrins: A Plant Protector Protein under Abiotic Stress.
    Yu Z; Wang X; Zhang L
    Int J Mol Sci; 2018 Oct; 19(11):. PubMed ID: 30384475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation and molecular characterization of an FSK
    Ghanmi S; Smith MA; Zaidi I; Drira M; Graether SP; Hanin M
    Phytochemistry; 2023 Sep; 213():113783. PubMed ID: 37406790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peptide mapping and assessment of cryoprotective activity of 26/27-kDa dehydrin from soybean seeds.
    Momma M; Kaneko S; Haraguchi K; Matsukura U
    Biosci Biotechnol Biochem; 2003 Aug; 67(8):1832-5. PubMed ID: 12951525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plant dehydrins and dehydrin-like proteins: characterization and participation in abiotic stress response.
    Szlachtowska Z; Rurek M
    Front Plant Sci; 2023; 14():1213188. PubMed ID: 37484455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of an Intrinsically Disordered Plant Stress Protein on the Properties of Water.
    Ferreira LA; Walczyk Mooradally A; Zaslavsky B; Uversky VN; Graether SP
    Biophys J; 2018 Nov; 115(9):1696-1706. PubMed ID: 30297135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NMR assignments of the intrinsically disordered K2 and YSK2 dehydrins.
    Findlater EE; Graether SP
    Biomol NMR Assign; 2009 Dec; 3(2):273-5. PubMed ID: 19842064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An intrinsically disordered radish vacuolar calcium-binding protein (RVCaB) showed cryoprotective activity for lactate dehydrogenase with its hydrophobic region.
    Osuda H; Sunano Y; Hara M
    Int J Biol Macromol; 2021 Jul; 182():1130-1137. PubMed ID: 33857518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.