These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
273 related articles for article (PubMed ID: 36292560)
1. Blood Pressure Measurement: From Cuff-Based to Contactless Monitoring. Man PK; Cheung KL; Sangsiri N; Shek WJ; Wong KL; Chin JW; Chan TT; So RH Healthcare (Basel); 2022 Oct; 10(10):. PubMed ID: 36292560 [TBL] [Abstract][Full Text] [Related]
2. Assessment of Non-Invasive Blood Pressure Prediction from PPG and rPPG Signals Using Deep Learning. Schrumpf F; Frenzel P; Aust C; Osterhoff G; Fuchs M Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577227 [TBL] [Abstract][Full Text] [Related]
3. Deep learning and remote photoplethysmography powered advancements in contactless physiological measurement. Chen W; Yi Z; Lim LJR; Lim RQR; Zhang A; Qian Z; Huang J; He J; Liu B Front Bioeng Biotechnol; 2024; 12():1420100. PubMed ID: 39104628 [TBL] [Abstract][Full Text] [Related]
4. Contactless Blood Pressure Measurement Via Remote Photoplethysmography With Synthetic Data Generation Using Generative Adversarial Networks. Wu BF; Chiu LW; Wu YC; Lai CC; Cheng HM; Chu PH IEEE J Biomed Health Inform; 2024 Feb; 28(2):621-632. PubMed ID: 37037253 [TBL] [Abstract][Full Text] [Related]
5. Blood Pressure Estimation Using Photoplethysmography Only: Comparison between Different Machine Learning Approaches. Khalid SG; Zhang J; Chen F; Zheng D J Healthc Eng; 2018; 2018():1548647. PubMed ID: 30425819 [TBL] [Abstract][Full Text] [Related]
6. Deep Learning Methods for Remote Heart Rate Measurement: A Review and Future Research Agenda. Cheng CH; Wong KL; Chin JW; Chan TT; So RHY Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577503 [TBL] [Abstract][Full Text] [Related]
7. A Universal Noninvasive Continuous Blood Pressure Measurement System for Remote Healthcare Monitoring. Mukherjee R; Ghosh S; Gupta B; Chakravarty T Telemed J E Health; 2018 Oct; 24(10):803-810. PubMed ID: 29356611 [TBL] [Abstract][Full Text] [Related]
8. A Deep Learning Approach to Predict Blood Pressure from PPG Signals. Tazarv A; Levorato M Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():5658-5662. PubMed ID: 34892406 [TBL] [Abstract][Full Text] [Related]
9. GRGB rPPG: An Efficient Low-Complexity Remote Photoplethysmography-Based Algorithm for Heart Rate Estimation. Haugg F; Elgendi M; Menon C Bioengineering (Basel); 2023 Feb; 10(2):. PubMed ID: 36829737 [TBL] [Abstract][Full Text] [Related]
10. Feasibility Study of Pulse Width at Half Amplitude of Camera PPG for Contactless Blood Pressure Estimation. Ding X; Wang W; Chen Y; Yang Y; Zhao Y; Kong D Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():365-368. PubMed ID: 34891310 [TBL] [Abstract][Full Text] [Related]
11. Cuffless Blood Pressure Measurement Using a Smartphone-Case Based ECG Monitor with Photoplethysmography in Hypertensive Patients. Sagirova Z; Kuznetsova N; Gogiberidze N; Gognieva D; Suvorov A; Chomakhidze P; Omboni S; Saner H; Kopylov P Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34069396 [TBL] [Abstract][Full Text] [Related]
13. Cuff-less blood pressure measurement based on hybrid feature selection algorithm and multi-penalty regularized regression technique. Khan Mamun MMR Biomed Phys Eng Express; 2021 Oct; 7(6):. PubMed ID: 34633299 [TBL] [Abstract][Full Text] [Related]
14. Continuous cuffless blood pressure monitoring using photoplethysmography-based PPG2BP-net for high intrasubject blood pressure variations. Joung J; Jung CW; Lee HC; Chae MJ; Kim HS; Park J; Shin WY; Kim C; Lee M; Choi C Sci Rep; 2023 May; 13(1):8605. PubMed ID: 37244974 [TBL] [Abstract][Full Text] [Related]
15. DNN-BP: a novel framework for cuffless blood pressure measurement from optimal PPG features using deep learning model. Raju SMTU; Dipto SA; Hossain MI; Chowdhury MAS; Haque F; Nashrah AT; Nishan A; Khan MMH; Hashem MMA Med Biol Eng Comput; 2024 Dec; 62(12):3687-3708. PubMed ID: 38963467 [TBL] [Abstract][Full Text] [Related]
16. Non-invasive cuff-less blood pressure machine learning algorithm using photoplethysmography and prior physiological data. Yang S; Morgan SP; Cho SY; Correia R; Wen L; Zhang Y Blood Press Monit; 2021 Aug; 26(4):312-320. PubMed ID: 33741776 [TBL] [Abstract][Full Text] [Related]
17. Novel Deep Convolutional Neural Network for Cuff-less Blood Pressure Measurement Using ECG and PPG Signals. Yan C; Li Z; Zhao W; Hu J; Jia D; Wang H; You T Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1917-1920. PubMed ID: 31946273 [TBL] [Abstract][Full Text] [Related]
18. Estimating Blood Pressure from the Photoplethysmogram Signal and Demographic Features Using Machine Learning Techniques. Chowdhury MH; Shuzan MNI; Chowdhury MEH; Mahbub ZB; Uddin MM; Khandakar A; Reaz MBI Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32492902 [TBL] [Abstract][Full Text] [Related]
19. PCA-Based Multi-Wavelength Photoplethysmography Algorithm for Cuffless Blood Pressure Measurement on Elderly Subjects. Liu J; Qiu S; Luo N; Lau SK; Yu H; Kwok T; Zhang YT; Zhao N IEEE J Biomed Health Inform; 2021 Mar; 25(3):663-673. PubMed ID: 32750946 [TBL] [Abstract][Full Text] [Related]
20. A novel CS-NET architecture based on the unification of CNN, SVM and super-resolution spectrogram to monitor and classify blood pressure using photoplethysmography. Pankaj ; Kumar A; Komaragiri R; Kumar M Comput Methods Programs Biomed; 2023 Oct; 240():107716. PubMed ID: 37542944 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]