These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 36292808)
1. Integrated Biological Control Using a Mixture of Two Entomopathogenic Bacteria, Hrithik MTH; Park Y; Park H; Kim Y Insects; 2022 Sep; 13(10):. PubMed ID: 36292808 [TBL] [Abstract][Full Text] [Related]
2. An entomopathogenic bacterium, Xenorhabdus hominickii ANU101, produces oxindole and suppresses host insect immune response by inhibiting eicosanoid biosynthesis. Sadekuzzaman M; Park Y; Lee S; Kim K; Jung JK; Kim Y J Invertebr Pathol; 2017 May; 145():13-22. PubMed ID: 28302381 [TBL] [Abstract][Full Text] [Related]
3. The Lrp transcriptional factor of an entomopathogenic bacterium, Xenorhabdus hominickii, activates non-ribosomal peptide synthetases to suppress insect immunity. Jin G; Kim IH; Kim Y Dev Comp Immunol; 2024 Feb; 151():105101. PubMed ID: 38000489 [TBL] [Abstract][Full Text] [Related]
4. A Mixture of Bacillus thuringiensis subsp. israelensis With Xenorhabdus nematophila -Cultured Broth Enhances Toxicity Against Mosquitoes Aedes albopictus and Culex pipiens pallens (Diptera: Culicidae). Park Y; Kyo Jung J; Kim Y J Econ Entomol; 2016 Mar; 109(3):1086-1093. PubMed ID: 27018440 [TBL] [Abstract][Full Text] [Related]
5. Immunosuppressive Activities of Novel PLA Mollah MMI; Dekebo A; Kim Y Insects; 2020 Aug; 11(8):. PubMed ID: 32759864 [TBL] [Abstract][Full Text] [Related]
6. Specific inhibition of Xenorhabdus hominickii, an entomopathogenic bacterium, against different types of host insect phospholipase A Sadekuzzaman M; Kim Y J Invertebr Pathol; 2017 Oct; 149():97-105. PubMed ID: 28803982 [TBL] [Abstract][Full Text] [Related]
7. Insect pathogens as biological control agents: Back to the future. Lacey LA; Grzywacz D; Shapiro-Ilan DI; Frutos R; Brownbridge M; Goettel MS J Invertebr Pathol; 2015 Nov; 132():1-41. PubMed ID: 26225455 [TBL] [Abstract][Full Text] [Related]
8. Virulent secondary metabolites of entomopathogenic bacteria genera, Xenorhabdus and Photorhabdus, inhibit phospholipase A Mollah MMI; Kim Y BMC Microbiol; 2020 Nov; 20(1):359. PubMed ID: 33228536 [TBL] [Abstract][Full Text] [Related]
9. Suppression of a transcriptional regulator, HexA, is essential for triggering the bacterial virulence of the entomopathogen, Xenorhabdus hominickii. Jin G; Jeong JS; Kim IH; Kim Y J Invertebr Pathol; 2024 Oct; 207():108219. PubMed ID: 39393625 [TBL] [Abstract][Full Text] [Related]
10. Identification and bacterial characteristics of Xenorhabdus hominickii ANU101 from an entomopathogenic nematode, Steinernema monticolum. Park Y; Kang S; Sadekuzzaman M; Kim H; Jung JK; Kim Y J Invertebr Pathol; 2017 Mar; 144():74-87. PubMed ID: 28193447 [TBL] [Abstract][Full Text] [Related]
11. Damage signal induced by Bacillus thuringiensis infection triggers immune responses via a DAMP molecule in lepidopteran insect, Spodoptera exigua. Hrithik MTH; Ahmed S; Kim Y Dev Comp Immunol; 2023 Feb; 139():104559. PubMed ID: 36181778 [TBL] [Abstract][Full Text] [Related]
12. Development of a high efficient "Dual Bt-Plus" insecticide using a primary form of an entomopathogenic bacterium, Xenorhabdus nematophila. Eom S; Park Y; Kim H; Kim Y J Microbiol Biotechnol; 2014 Apr; 24(4):507-21. PubMed ID: 24394195 [TBL] [Abstract][Full Text] [Related]
13. Benzylideneacetone, an immunosuppressant, enhances virulence of Bacillus thuringiensis against beet armyworm (Lepidoptera: Noctuidae). Kwon B; Kim Y J Econ Entomol; 2008 Feb; 101(1):36-41. PubMed ID: 18330113 [TBL] [Abstract][Full Text] [Related]
14. Isolation and molecular characterization of Bacillus thuringiensis subsp. kurstaki toxic to lepidopteran pests Spodoptera spp. and Plutella xylostella. Park MG; Choi JY; Kim JH; Park DH; Wang M; Kim HJ; Kim SH; Lee HY; Je YH Pest Manag Sci; 2022 Jul; 78(7):2976-2984. PubMed ID: 35419912 [TBL] [Abstract][Full Text] [Related]
15. Differential immunosuppression by inhibiting PLA Ahmed S; Kim Y J Invertebr Pathol; 2018 Sep; 157():136-146. PubMed ID: 29802883 [TBL] [Abstract][Full Text] [Related]
16. Relative activity of 15 bacterial strains against the larvae of Helicoverpa armigera, Spodoptera exigua, and Spodoptera litura (Lepidoptera: Noctuidae). Cao SK; Du XX; Chen G; Zeng AP; Yu H J Econ Entomol; 2023 Oct; 116(5):1505-1517. PubMed ID: 37499044 [TBL] [Abstract][Full Text] [Related]
17. Bt GS57 Interaction With Gut Microbiota Accelerates Li Y; Zhao D; Wu H; Ji Y; Liu Z; Guo X; Guo W; Bi Y Front Microbiol; 2022; 13():835227. PubMed ID: 35401496 [TBL] [Abstract][Full Text] [Related]
18. Cadherin is involved in the action of Bacillus thuringiensis toxins Cry1Ac and Cry2Aa in the beet armyworm, Spodoptera exigua. Qiu L; Hou L; Zhang B; Liu L; Li B; Deng P; Ma W; Wang X; Fabrick JA; Chen L; Lei C J Invertebr Pathol; 2015 May; 127():47-53. PubMed ID: 25754522 [TBL] [Abstract][Full Text] [Related]
19. Identification of an entomopathogenic bacterium, Xenorhabdus ehlersii KSY, from Steinernema longicaudum GNUS101 and its immunosuppressive activity against insect host by inhibiting eicosanoid biosynthesis. Kim H; Keum S; Hasan A; Kim H; Jung Y; Lee D; Kim Y J Invertebr Pathol; 2018 Nov; 159():6-17. PubMed ID: 30389324 [TBL] [Abstract][Full Text] [Related]
20. Dual Oxidase-Derived Reactive Oxygen Species Against Sajjadian SM; Kim Y Front Microbiol; 2020; 11():528. PubMed ID: 32292400 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]