These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 36293018)

  • 61. Overexpression of a
    Li W; Li P; Chen H; Zhong J; Liang X; Wei Y; Zhang L; Wang H; Han D
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982335
    [TBL] [Abstract][Full Text] [Related]  

  • 62. OsMSR3, a Small Heat Shock Protein, Confers Enhanced Tolerance to Copper Stress in
    Cui Y; Wang M; Yin X; Xu G; Song S; Li M; Liu K; Xia X
    Int J Mol Sci; 2019 Dec; 20(23):. PubMed ID: 31816902
    [TBL] [Abstract][Full Text] [Related]  

  • 63. ZmMKK4, a novel group C mitogen-activated protein kinase kinase in maize (Zea mays), confers salt and cold tolerance in transgenic Arabidopsis.
    Kong X; Pan J; Zhang M; Xing X; Zhou Y; Liu Y; Li D; Li D
    Plant Cell Environ; 2011 Aug; 34(8):1291-303. PubMed ID: 21477122
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The Miscanthus NAC transcription factor MlNAC9 enhances abiotic stress tolerance in transgenic Arabidopsis.
    Zhao X; Yang X; Pei S; He G; Wang X; Tang Q; Jia C; Lu Y; Hu R; Zhou G
    Gene; 2016 Jul; 586(1):158-69. PubMed ID: 27085481
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A R2R3-MYB transcription factor gene, FtMYB13, from Tartary buckwheat improves salt/drought tolerance in Arabidopsis.
    Huang Y; Zhao H; Gao F; Yao P; Deng R; Li C; Chen H; Wu Q
    Plant Physiol Biochem; 2018 Nov; 132():238-248. PubMed ID: 30227384
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Ectopic Expression of
    Zhao X; Wu T; Guo S; Hu J; Zhan Y
    Int J Mol Sci; 2022 Sep; 23(17):. PubMed ID: 36077574
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Tartary buckwheat FtMYB10 encodes an R2R3-MYB transcription factor that acts as a novel negative regulator of salt and drought response in transgenic Arabidopsis.
    Gao F; Yao H; Zhao H; Zhou J; Luo X; Huang Y; Li C; Chen H; Wu Q
    Plant Physiol Biochem; 2016 Dec; 109():387-396. PubMed ID: 27814568
    [TBL] [Abstract][Full Text] [Related]  

  • 68. VvNAC17, a novel stress-responsive grapevine (Vitis vinifera L.) NAC transcription factor, increases sensitivity to abscisic acid and enhances salinity, freezing, and drought tolerance in transgenic Arabidopsis.
    Ju YL; Yue XF; Min Z; Wang XH; Fang YL; Zhang JX
    Plant Physiol Biochem; 2020 Jan; 146():98-111. PubMed ID: 31734522
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Salt-Related MYB1 Coordinates Abscisic Acid Biosynthesis and Signaling during Salt Stress in Arabidopsis.
    Wang T; Tohge T; Ivakov A; Mueller-Roeber B; Fernie AR; Mutwil M; Schippers JH; Persson S
    Plant Physiol; 2015 Oct; 169(2):1027-41. PubMed ID: 26243618
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The GARP family transcription factor MtHHO3 negatively regulates salt tolerance in Medicago truncatula.
    Wang X; Wei C; Huang H; Kang J; Long R; Chen L; Li M; Yang Q
    Plant Physiol Biochem; 2024 Apr; 209():108542. PubMed ID: 38531119
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Transcriptome profiling of genes involving in carotenoid biosynthesis and accumulation between leaf and root of carrot (Daucus carota L.).
    Ma J; Li J; Xu Z; Wang F; Xiong A
    Acta Biochim Biophys Sin (Shanghai); 2018 May; 50(5):481-490. PubMed ID: 29617714
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The genes ABI1 and ABI2 are involved in abscisic acid- and drought-inducible expression of the Daucus carota L. Dc3 promoter in guard cells of transgenic Arabidopsis thaliana (L.) Heynh.
    Chak RK; Thomas TL; Quatrano RS; Rock CD
    Planta; 2000 May; 210(6):875-83. PubMed ID: 10872217
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Unique chromoplast organisation and carotenoid gene expression in carotenoid-rich carrot callus.
    Oleszkiewicz T; Klimek-Chodacka M; Milewska-Hendel A; Zubko M; Stróż D; Kurczyńska E; Boba A; Szopa J; Baranski R
    Planta; 2018 Dec; 248(6):1455-1471. PubMed ID: 30132151
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The Alfin-like homeodomain finger protein AL5 suppresses multiple negative factors to confer abiotic stress tolerance in Arabidopsis.
    Wei W; Zhang YQ; Tao JJ; Chen HW; Li QT; Zhang WK; Ma B; Lin Q; Zhang JS; Chen SY
    Plant J; 2015 Mar; 81(6):871-83. PubMed ID: 25619813
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A root specific induction of carotenoid biosynthesis contributes to ABA production upon salt stress in arabidopsis.
    Ruiz-Sola MÁ; Arbona V; Gómez-Cadenas A; Rodríguez-Concepción M; Rodríguez-Villalón A
    PLoS One; 2014; 9(3):e90765. PubMed ID: 24595399
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Overexpression of Sweet Potato Carotenoid Cleavage Dioxygenase 4 (
    Zhang J; He L; Dong J; Zhao C; Tang R; Jia X
    Int J Mol Sci; 2022 Sep; 23(17):. PubMed ID: 36077355
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Down-regulation of β-carotene hydroxylase increases β-carotene and total carotenoids enhancing salt stress tolerance in transgenic cultured cells of sweetpotato.
    Kim SH; Ahn YO; Ahn MJ; Lee HS; Kwak SS
    Phytochemistry; 2012 Feb; 74():69-78. PubMed ID: 22154923
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A PIP-mediated osmotic stress signaling cascade plays a positive role in the salt tolerance of sugarcane.
    Tang H; Yu Q; Li Z; Liu F; Su W; Zhang C; Ling H; Luo J; Su Y; Que Y
    BMC Plant Biol; 2021 Dec; 21(1):589. PubMed ID: 34903178
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A transcriptional analysis of carotenoid, chlorophyll and plastidial isoprenoid biosynthesis genes during development and osmotic stress responses in Arabidopsis thaliana.
    Meier S; Tzfadia O; Vallabhaneni R; Gehring C; Wurtzel ET
    BMC Syst Biol; 2011 May; 5():77. PubMed ID: 21595952
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The response mechanism to salt stress in Arabidopsis transgenic lines over-expressing of GmG6PD.
    Jin J; Li K; Qin J; Yan L; Wang S; Zhang G; Wang X; Bi Y
    Plant Physiol Biochem; 2021 May; 162():74-85. PubMed ID: 33667969
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.