BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 36293196)

  • 21. Regulatory crosstalk between microRNAs and hormone signalling cascades controls the variation on seed dormancy phenotype at Arabidopsis thaliana seed set.
    Liu Y; El-Kassaby YA
    Plant Cell Rep; 2017 May; 36(5):705-717. PubMed ID: 28197719
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genome-Wide Identification and Characterization of microRNAs in Developing Grains of Zea mays L.
    Li D; Liu Z; Gao L; Wang L; Gao M; Jiao Z; Qiao H; Yang J; Chen M; Yao L; Liu R; Kan Y
    PLoS One; 2016; 11(4):e0153168. PubMed ID: 27082634
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Physiological responses and small RNAs changes in maize under nitrogen deficiency and resupply.
    Yang Z; Wang Z; Yang C; Yang Z; Li H; Wu Y
    Genes Genomics; 2019 Oct; 41(10):1183-1194. PubMed ID: 31313105
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genome-Wide Identification of miRNAs and Their Targets Involved in the Developing Internodes under Maize Ears by Responding to Hormone Signaling.
    Zhao Z; Xue Y; Yang H; Li H; Sun G; Zhao X; Ding D; Tang J
    PLoS One; 2016; 11(10):e0164026. PubMed ID: 27695059
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Integrated microRNA and transcriptome profiling reveal key miRNA-mRNA interaction pairs associated with seed development in Tartary buckwheat (Fagopyrum tataricum).
    Li H; Meng H; Sun X; Deng J; Shi T; Zhu L; Lv Q; Chen Q
    BMC Plant Biol; 2021 Mar; 21(1):132. PubMed ID: 33750309
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of microRNAs and long non-coding RNAs involved in fatty acid biosynthesis in tree peony seeds.
    Yin DD; Li SS; Shu QY; Gu ZY; Wu Q; Feng CY; Xu WZ; Wang LS
    Gene; 2018 Aug; 666():72-82. PubMed ID: 29738839
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-throughput sequencing of small RNAs from pollen and silk and characterization of miRNAs as candidate factors involved in pollen-silk interactions in maize.
    Li XM; Sang YL; Zhao XY; Zhang XS
    PLoS One; 2013; 8(8):e72852. PubMed ID: 23991159
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The miRNA-Mediated Post-Transcriptional Regulation of Maize in Response to High Temperature.
    Zhang M; An P; Li H; Wang X; Zhou J; Dong P; Zhao Y; Wang Q; Li C
    Int J Mol Sci; 2019 Apr; 20(7):. PubMed ID: 30970661
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genome-Wide Dissection of the MicroRNA Expression Profile in Rice Embryo during Early Stages of Seed Germination.
    He D; Wang Q; Wang K; Yang P
    PLoS One; 2015; 10(12):e0145424. PubMed ID: 26681181
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of miRNAs and their targets through high-throughput sequencing and degradome analysis in male and female Asparagus officinalis.
    Chen J; Zheng Y; Qin L; Wang Y; Chen L; He Y; Fei Z; Lu G
    BMC Plant Biol; 2016 Apr; 16():80. PubMed ID: 27068118
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Integrated transcriptome, small RNA, and degradome analysis reveals the complex network regulating starch biosynthesis in maize.
    Zhang X; Xie S; Han J; Zhou Y; Liu C; Zhou Z; Wang F; Cheng Z; Zhang J; Hu Y; Hao Z; Li M; Zhang D; Yong H; Huang Y; Weng J; Li X
    BMC Genomics; 2019 Jul; 20(1):574. PubMed ID: 31296166
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification and Characterization of Novel Maize Mirnas Involved in Different Genetic Background.
    Sheng L; Chai W; Gong X; Zhou L; Cai R; Li X; Zhao Y; Jiang H; Cheng B
    Int J Biol Sci; 2015; 11(7):781-93. PubMed ID: 26078720
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transcriptome assembly in Suaeda aralocaspica to reveal the distinct temporal gene/miRNA alterations between the dimorphic seeds during germination.
    Wang L; Wang HL; Yin L; Tian CY
    BMC Genomics; 2017 Oct; 18(1):806. PubMed ID: 29052505
    [TBL] [Abstract][Full Text] [Related]  

  • 34. GWAS and transcriptome analysis reveal MADS26 involved in seed germination ability in maize.
    Ma L; Wang C; Hu Y; Dai W; Liang Z; Zou C; Pan G; Lübberstedt T; Shen Y
    Theor Appl Genet; 2022 May; 135(5):1717-1730. PubMed ID: 35247071
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of miRNAs and Their Target Genes Involved in Cucumber Fruit Expansion Using Small RNA and Degradome Sequencing.
    Sun Y; Luo W; Chang H; Li Z; Zhou J; Li X; Zheng J; Hao M
    Biomolecules; 2019 Sep; 9(9):. PubMed ID: 31547414
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification and characterization of cold-responsive microRNAs in tea plant (Camellia sinensis) and their targets using high-throughput sequencing and degradome analysis.
    Zhang Y; Zhu X; Chen X; Song C; Zou Z; Wang Y; Wang M; Fang W; Li X
    BMC Plant Biol; 2014 Oct; 14():271. PubMed ID: 25330732
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of microRNAs involved in asymbiotic germination of Bletilla striata (Orchidaceae) seeds.
    Wang C; Tian M; Zhang Y
    Plant Physiol Biochem; 2021 Oct; 167():163-173. PubMed ID: 34358730
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of Taxus microRNAs and their targets with high-throughput sequencing and degradome analysis.
    Hao DC; Yang L; Xiao PG; Liu M
    Physiol Plant; 2012 Dec; 146(4):388-403. PubMed ID: 22708792
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ZmEREB92 plays a negative role in seed germination by regulating ethylene signaling and starch mobilization in maize.
    Fu J; Pei W; He L; Ma B; Tang C; Zhu L; Wang L; Zhong Y; Chen G; Wang Q; Wang Q
    PLoS Genet; 2023 Nov; 19(11):e1011052. PubMed ID: 37976306
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Parallel analysis of RNA ends reveals global microRNA-mediated target RNA cleavage in maize.
    He J; Xu C; You C; Mo B; Chen X; Gao L; Liu L
    Plant J; 2022 Oct; 112(1):268-283. PubMed ID: 35962593
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.