BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

544 related articles for article (PubMed ID: 36293501)

  • 1. An Overview into Polyethylene Terephthalate (PET) Hydrolases and Efforts in Tailoring Enzymes for Improved Plastic Degradation.
    Khairul Anuar NFS; Huyop F; Ur-Rehman G; Abdullah F; Normi YM; Sabullah MK; Abdul Wahab R
    Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36293501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial degradation and valorization of poly(ethylene terephthalate) (PET) monomers.
    Gao R; Pan H; Kai L; Han K; Lian J
    World J Microbiol Biotechnol; 2022 Apr; 38(5):89. PubMed ID: 35426614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Ultra-Sensitive
    Dierkes RF; Wypych A; Pérez-García P; Danso D; Chow J; Streit WR
    Appl Environ Microbiol; 2023 Jan; 89(1):e0160322. PubMed ID: 36507653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Environmental Consortium Containing
    Roberts C; Edwards S; Vague M; León-Zayas R; Scheffer H; Chan G; Swartz NA; Mellies JL
    mSphere; 2020 Dec; 5(6):. PubMed ID: 33361127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using a marine microalga as a chassis for polyethylene terephthalate (PET) degradation.
    Moog D; Schmitt J; Senger J; Zarzycki J; Rexer KH; Linne U; Erb T; Maier UG
    Microb Cell Fact; 2019 Oct; 18(1):171. PubMed ID: 31601227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Current Advances in the Biodegradation and Bioconversion of Polyethylene Terephthalate.
    Qi X; Yan W; Cao Z; Ding M; Yuan Y
    Microorganisms; 2021 Dec; 10(1):. PubMed ID: 35056486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial Genes for a Circular and Sustainable Bio-PET Economy.
    Salvador M; Abdulmutalib U; Gonzalez J; Kim J; Smith AA; Faulon JL; Wei R; Zimmermann W; Jimenez JI
    Genes (Basel); 2019 May; 10(5):. PubMed ID: 31100963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emerging Roles of PETase and MHETase in the Biodegradation of Plastic Wastes.
    Maity W; Maity S; Bera S; Roy A
    Appl Biochem Biotechnol; 2021 Aug; 193(8):2699-2716. PubMed ID: 33797026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineered polyethylene terephthalate hydrolases: perspectives and limits.
    Kawai F; Iizuka R; Kawabata T
    Appl Microbiol Biotechnol; 2024 Jul; 108(1):404. PubMed ID: 38953996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A review on cutinases enzyme in degradation of microplastics.
    Sahu S; Kaur A; Khatri M; Singh G; Arya SK
    J Environ Manage; 2023 Dec; 347():119193. PubMed ID: 37797518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comprehensive review on enzymatic biodegradation of polyethylene terephthalate.
    Qiu J; Chen Y; Zhang L; Wu J; Zeng X; Shi X; Liu L; Chen J
    Environ Res; 2024 Jan; 240(Pt 2):117427. PubMed ID: 37865324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent advances in the discovery, characterization, and engineering of poly(ethylene terephthalate) (PET) hydrolases.
    Gao R; Pan H; Lian J
    Enzyme Microb Technol; 2021 Oct; 150():109868. PubMed ID: 34489027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced biodegradation of waste poly(ethylene terephthalate) using a reinforced plastic degrading enzyme complex.
    Hwang DH; Lee ME; Cho BH; Oh JW; You SK; Ko YJ; Hyeon JE; Han SO
    Sci Total Environ; 2022 Oct; 842():156890. PubMed ID: 35753492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plastic-Degrading Potential across the Global Microbiome Correlates with Recent Pollution Trends.
    Zrimec J; Kokina M; Jonasson S; Zorrilla F; Zelezniak A
    mBio; 2021 Oct; 12(5):e0215521. PubMed ID: 34700384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New Insights into the Function and Global Distribution of Polyethylene Terephthalate (PET)-Degrading Bacteria and Enzymes in Marine and Terrestrial Metagenomes.
    Danso D; Schmeisser C; Chow J; Zimmermann W; Wei R; Leggewie C; Li X; Hazen T; Streit WR
    Appl Environ Microbiol; 2018 Apr; 84(8):. PubMed ID: 29427431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An engineered PET depolymerase to break down and recycle plastic bottles.
    Tournier V; Topham CM; Gilles A; David B; Folgoas C; Moya-Leclair E; Kamionka E; Desrousseaux ML; Texier H; Gavalda S; Cot M; Guémard E; Dalibey M; Nomme J; Cioci G; Barbe S; Chateau M; André I; Duquesne S; Marty A
    Nature; 2020 Apr; 580(7802):216-219. PubMed ID: 32269349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Marine hydrocarbon-degrading bacteria breakdown poly(ethylene terephthalate) (PET).
    Denaro R; Aulenta F; Crisafi F; Di Pippo F; Cruz Viggi C; Matturro B; Tomei P; Smedile F; Martinelli A; Di Lisio V; Venezia C; Rossetti S
    Sci Total Environ; 2020 Dec; 749():141608. PubMed ID: 32836129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodegradation of Typical Plastics: From Microbial Diversity to Metabolic Mechanisms.
    Lv S; Li Y; Zhao S; Shao Z
    Int J Mol Sci; 2024 Jan; 25(1):. PubMed ID: 38203764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Advances in poly(ethylene terephthalate) hydrolases].
    Zhao Z; Zhang G; Liu K; Li S
    Sheng Wu Gong Cheng Xue Bao; 2023 May; 39(5):1998-2014. PubMed ID: 37212227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perspectives on the Role of Enzymatic Biocatalysis for the Degradation of Plastic PET.
    Magalhães RP; Cunha JM; Sousa SF
    Int J Mol Sci; 2021 Oct; 22(20):. PubMed ID: 34681915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.